davide221 commited on
Commit
b2312cb
Β·
1 Parent(s): 89a586f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -28
README.md CHANGED
@@ -1,65 +1,62 @@
1
  ---
2
  license: apache-2.0
3
- datasets:
4
- - mlabonne/Evol-Instruct-Python-1k
5
  pipeline_tag: text-generation
6
  ---
7
- # πŸ¦™πŸ’» EvolCodeLlama-7b
8
 
9
- πŸ“ [Article](https://medium.com/@mlabonne/a-beginners-guide-to-llm-fine-tuning-4bae7d4da672)
10
 
11
- <center><img src="https://i.imgur.com/5m7OJQU.png" width="300"></center>
12
 
13
  This is a [`codellama/CodeLlama-7b-hf`](https://huggingface.co/codellama/CodeLlama-7b-hf) model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/Evol-Instruct-Python-1k`](https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-1k).
14
 
15
  ## πŸ”§ Training
16
 
17
- It was trained on an RTX 3090 in 1h 11m 44s with the following configuration file:
18
 
19
  ```yaml
20
- base_model: codellama/CodeLlama-7b-hf
21
- base_model_config: codellama/CodeLlama-7b-hf
22
  model_type: LlamaForCausalLM
23
- tokenizer_type: LlamaTokenizer
24
  is_llama_derived_model: true
25
- hub_model_id: EvolCodeLlama-7b
26
 
27
  load_in_8bit: false
28
  load_in_4bit: true
29
  strict: false
30
 
31
  datasets:
32
- - path: mlabonne/Evol-Instruct-Python-1k
33
  type: alpaca
34
  dataset_prepared_path: last_run_prepared
35
- val_set_size: 0.02
36
  output_dir: ./qlora-out
37
 
38
- adapter: qlora
39
- lora_model_dir:
40
-
41
- sequence_len: 2048
42
  sample_packing: true
 
43
 
 
 
44
  lora_r: 32
45
  lora_alpha: 16
46
  lora_dropout: 0.05
47
- lora_target_modules:
48
  lora_target_linear: true
49
  lora_fan_in_fan_out:
50
 
51
- wandb_project: axolotl
52
  wandb_entity:
53
  wandb_watch:
54
  wandb_run_id:
55
  wandb_log_model:
56
 
57
- gradient_accumulation_steps: 1
58
- micro_batch_size: 10
59
  num_epochs: 3
60
- optimizer: paged_adamw_32bit
61
  lr_scheduler: cosine
62
- learning_rate: 0.0002
63
 
64
  train_on_inputs: false
65
  group_by_length: false
@@ -75,9 +72,8 @@ logging_steps: 1
75
  xformers_attention:
76
  flash_attention: true
77
 
78
- warmup_steps: 100
79
- eval_steps: 0.01
80
- save_strategy: epoch
81
  save_steps:
82
  debug:
83
  deepspeed:
@@ -94,7 +90,7 @@ Here are the loss curves:
94
 
95
  ![](https://i.imgur.com/zrBq01N.png)
96
 
97
- It is mainly designed for educational purposes, not for inference.
98
 
99
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
100
 
@@ -108,7 +104,7 @@ import transformers
108
  import torch
109
 
110
  model = "mlabonne/EvolCodeLlama-7b"
111
- prompt = "Your prompt"
112
 
113
  tokenizer = AutoTokenizer.from_pretrained(model)
114
  pipeline = transformers.pipeline(
@@ -124,7 +120,7 @@ sequences = pipeline(
124
  top_k=10,
125
  num_return_sequences=1,
126
  eos_token_id=tokenizer.eos_token_id,
127
- max_length=200,
128
  )
129
  for seq in sequences:
130
  print(f"Result: {seq['generated_text']}")
 
1
  ---
2
  license: apache-2.0
 
 
3
  pipeline_tag: text-generation
4
  ---
5
+ # πŸ¦™πŸ’» Safurai-Csharp-34B
6
 
7
+ πŸ“ [Article](https://www.safurai.com/blog/introducing-safurai-csharp)
8
 
9
+ <center><img src="https://media.discordapp.net/attachments/1071900237414801528/1165927645469478942/mrciffa_A_cartoon_samurai_wearing_a_black_jacket_as_a_chemistry_d4c17e16-567a-41da-9e0e-2902e93def2c.png?ex=6548a1bc&is=65362cbc&hm=5721b5c15d8f97374212970a7d01f17923ef5015d385230b8ae5542fd2d0df21&=&width=1224&height=1224" width="300"></center>
10
 
11
  This is a [`codellama/CodeLlama-7b-hf`](https://huggingface.co/codellama/CodeLlama-7b-hf) model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/Evol-Instruct-Python-1k`](https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-1k).
12
 
13
  ## πŸ”§ Training
14
 
15
+ It was trained on an in 1h 11m 44s with the following configuration file:
16
 
17
  ```yaml
18
+ base_model: codellama/CodeLlama-34b-hf
19
+ base_model_config: codellama/CodeLlama-34b-hf
20
  model_type: LlamaForCausalLM
21
+ tokenizer_type: CodeLlamaTokenizer
22
  is_llama_derived_model: true
23
+ hub_model_id: "Safurai/Evol-csharp-v1"
24
 
25
  load_in_8bit: false
26
  load_in_4bit: true
27
  strict: false
28
 
29
  datasets:
30
+ - path: Safurai/EvolInstruct-csharp-16k-13B-Alpaca
31
  type: alpaca
32
  dataset_prepared_path: last_run_prepared
33
+ val_set_size: 0.01
34
  output_dir: ./qlora-out
35
 
36
+ sequence_len: 4096
 
 
 
37
  sample_packing: true
38
+ pad_to_sequence_len: true
39
 
40
+ adapter: lora
41
+ lora_model_dir:
42
  lora_r: 32
43
  lora_alpha: 16
44
  lora_dropout: 0.05
 
45
  lora_target_linear: true
46
  lora_fan_in_fan_out:
47
 
48
+ wandb_project: codellama-csharp
49
  wandb_entity:
50
  wandb_watch:
51
  wandb_run_id:
52
  wandb_log_model:
53
 
54
+ gradient_accumulation_steps: 4
55
+ micro_batch_size: 2
56
  num_epochs: 3
57
+ optimizer: adamw_bnb_8bit
58
  lr_scheduler: cosine
59
+ learning_rate: 0.0003
60
 
61
  train_on_inputs: false
62
  group_by_length: false
 
72
  xformers_attention:
73
  flash_attention: true
74
 
75
+ warmup_steps: 40
76
+ eval_steps: 40
 
77
  save_steps:
78
  debug:
79
  deepspeed:
 
90
 
91
  ![](https://i.imgur.com/zrBq01N.png)
92
 
93
+ It is mainly designed for experimental purposes, not for inference.
94
 
95
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
96
 
 
104
  import torch
105
 
106
  model = "mlabonne/EvolCodeLlama-7b"
107
+ prompt = "Your csharp request"
108
 
109
  tokenizer = AutoTokenizer.from_pretrained(model)
110
  pipeline = transformers.pipeline(
 
120
  top_k=10,
121
  num_return_sequences=1,
122
  eos_token_id=tokenizer.eos_token_id,
123
+ max_length=1000,
124
  )
125
  for seq in sequences:
126
  print(f"Result: {seq['generated_text']}")