Sagicc's picture
Update README.md
2c33fde verified
metadata
language:
  - sr
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
  - google/fleurs
  - classla/ParlaSpeech-RS
  - Sagicc/audio-lmb-ds
metrics:
  - wer
model-index:
  - name: Whisper Medium v3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_16_0
          config: sr
          split: test
          args: sr
        metrics:
          - name: Wer
            type: wer
            value: 0.07912398445778877

Whisper Medium v3

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1501
  • Wer Ortho: 0.1759
  • Wer: 0.0791

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2054 0.03 500 0.2392 0.2715 0.1484
0.1782 0.05 1000 0.2056 0.2411 0.1155
0.1736 0.08 1500 0.1768 0.1990 0.0994
0.1662 0.11 2000 0.1677 0.1925 0.0940
0.1409 0.13 2500 0.1589 0.1891 0.0860
0.1346 0.16 3000 0.1565 0.1897 0.0881
0.1263 0.19 3500 0.1523 0.1805 0.0819
0.137 0.22 4000 0.1501 0.1759 0.0791

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.1