Sajjo's picture
Upload processor
95bb821 verified
metadata
license: mit
tags:
  - generated_from_trainer
base_model: facebook/w2v-bert-2.0
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-bangala-gpu-CV16.0_v2
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: bn
          split: test
          args: bn
        metrics:
          - type: wer
            value: 0.4811011116993118
            name: Wer

w2v-bert-2.0-bangala-gpu-CV16.0_v2

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4490
  • Wer: 0.4811

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.42184e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5221 0.31 300 0.5900 0.6271
1.2024 0.63 600 0.4088 0.4071
0.9149 0.94 900 0.3200 0.3270
0.8124 1.26 1200 0.2965 0.3080
0.7028 1.57 1500 0.2759 0.2884
0.6301 1.89 1800 0.2435 0.2671
0.6147 2.2 2100 0.2335 0.2477
0.6304 2.52 2400 0.2248 0.2458
0.5921 2.83 2700 0.2326 0.2441
0.495 3.15 3000 0.2180 0.2378
0.4987 3.46 3300 0.2139 0.2227
0.5669 3.78 3600 0.2097 0.2236
0.5904 4.09 3900 0.2038 0.2178
0.6016 4.41 4200 0.2091 0.2131
0.5325 4.72 4500 0.2064 0.2147
0.5271 5.04 4800 0.2002 0.2159
0.5229 5.35 5100 0.2069 0.2209
0.5843 5.67 5400 0.2090 0.2202
0.5477 5.98 5700 0.2085 0.2175
0.508 6.3 6000 0.2046 0.2158
0.5226 6.61 6300 0.2515 0.3250
0.7576 6.93 6600 0.2343 0.2364
1.0089 7.24 6900 0.2731 0.2713
0.9462 7.56 7200 0.2588 0.2648
0.8648 7.87 7500 0.2916 0.3393
1.1282 8.19 7800 0.3830 0.4583
1.3279 8.5 8100 0.3910 0.4117
1.2722 8.82 8400 0.4424 0.3442
1.2886 9.13 8700 0.4421 0.4011
1.3274 9.45 9000 0.4483 0.4769
1.3235 9.76 9300 0.4490 0.4811

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.0