|
--- |
|
license: cc-by-nc-4.0 |
|
language: |
|
- en |
|
pipeline_tag: image-text-to-text |
|
--- |
|
|
|
|
|
# Model description |
|
|
|
BLIP-3 consists of 3 models: a CLIP-like image encoder, a VL connector, and a large language model. |
|
|
|
# Direct Use and Downstream Use |
|
|
|
|
|
# Bias, Risks, Limitations, and Ethical Considerations |
|
|
|
# How to use |
|
|
|
> We require use the development version (`"4.41.0.dev0"`) of the `transformers` library. To get it, as of 05/07/2024, one can use `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers.` |
|
|
|
```python |
|
from transformers import AutoModelForVision2Seq, AutoTokenizer, AutoImageProcessor, StoppingCriteria |
|
import torch |
|
import requests |
|
from PIL import Image |
|
|
|
# define the prompt template |
|
def apply_prompt_template(prompt): |
|
s = ( |
|
'<|system|>\nA chat between a curious user and an artificial intelligence assistant. ' |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions.<|end|>\n" |
|
f'<|user|>\n<image>\n{prompt}<|end|>\n<|assistant|>\n' |
|
) |
|
return s |
|
class EosListStoppingCriteria(StoppingCriteria): |
|
def __init__(self, eos_sequence = [32007]): |
|
self.eos_sequence = eos_sequence |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
last_ids = input_ids[:,-len(self.eos_sequence):].tolist() |
|
return self.eos_sequence in last_ids |
|
|
|
# load models |
|
model_name_or_path = "Salesforce/blip3-phi3-3b-instruct-r-v1" |
|
model = AutoModelForVision2Seq.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, use_fast=True, legacy=False) |
|
image_processor = AutoImageProcessor.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
tokenizer = model.update_special_tokens(tokenizer) |
|
|
|
# craft a test sample |
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' |
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') |
|
query = "how many dogs are in the picture?" |
|
|
|
model = model.cuda() |
|
inputs = image_processor([raw_image], return_tensors="pt", image_aspect_ratio='anyres') |
|
prompt = apply_prompt_template(query) |
|
language_inputs = tokenizer([prompt], return_tensors="pt") |
|
inputs.update(language_inputs) |
|
inputs = {name: tensor.cuda() for name, tensor in inputs.items()} |
|
generated_text = model.generate(**inputs, image_size=[raw_image.size], |
|
pad_token_id=tokenizer.pad_token_id, |
|
do_sample=False, max_new_tokens=768, top_p=None, num_beams=1, |
|
stopping_criteria = [EosListStoppingCriteria()], |
|
) |
|
prediction = tokenizer.decode(generated_text[0], skip_special_tokens=True) |
|
print("==> prediciton: ", prediction) |
|
# output: ==> prediciton: There is one dog in the picture. |
|
``` |
|
|
|
# License |
|
|
|
Our code and weights are released under the Creative Commons Attribution Non Commercial 4.0 [LICENSE](LICENSE.txt). |
|
|
|
# Troubleshoot |
|
|
|
1. If you missing any packages, please consider the followings |
|
|
|
``` |
|
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121 |
|
pip install open_clip_torch==2.24.0 |
|
pip install einops |
|
pip install einops-exts |
|
``` |