Samuael's picture
End of training
d038829 verified
|
raw
history blame
3.39 kB
metadata
library_name: transformers
base_model: Samuael/ethiopic-asr-characters
tags:
  - generated_from_trainer
datasets:
  - alffa_amharic
metrics:
  - wer
model-index:
  - name: ethiopic-asr-characters
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: alffa_amharic
          type: alffa_amharic
          config: clean
          split: None
          args: clean
        metrics:
          - name: Wer
            type: wer
            value: 0.3037292519939642

ethiopic-asr-characters

This model is a fine-tuned version of Samuael/ethiopic-asr-characters on the alffa_amharic dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4233
  • Wer: 0.3037
  • Phoneme Cer: 0.1439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer Phoneme Cer
0.1902 0.2312 200 0.5678 0.3431 0.1555
0.1622 0.4624 400 0.5520 0.3321 0.1532
0.0933 0.6936 600 0.5467 0.3292 0.1527
0.1337 0.9249 800 0.5601 0.3315 0.1531
0.091 1.1561 1000 0.5508 0.3307 0.1522
0.2286 1.3873 1200 0.5274 0.3267 0.1510
0.1596 1.6185 1400 0.5085 0.3273 0.1506
0.2091 1.8497 1600 0.4826 0.3198 0.1498
0.2798 2.0809 1800 0.4731 0.3187 0.1489
0.2678 2.3121 2000 0.4700 0.3165 0.1482
0.2777 2.5434 2200 0.4521 0.3137 0.1468
0.5036 2.7746 2400 0.4592 0.3133 0.1463
0.3513 3.0058 2600 0.4535 0.3119 0.1469
0.6127 3.2370 2800 0.4434 0.3080 0.1457
0.3057 3.4682 3000 0.4377 0.3090 0.1454
0.346 3.6994 3200 0.4348 0.3077 0.1449
0.3782 3.9306 3400 0.4273 0.3035 0.1442
0.2468 4.1618 3600 0.4270 0.3051 0.1442
0.1932 4.3931 3800 0.4232 0.3029 0.1436
0.3175 4.6243 4000 0.4269 0.3040 0.1435
0.1834 4.8555 4200 0.4233 0.3037 0.1439

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3