|
--- |
|
tags: |
|
- pytorch_model_hub_mixin |
|
- model_hub_mixin |
|
license: mit |
|
datasets: |
|
- mlfoundations/datacomp_1b |
|
base_model: |
|
- apple/DFN5B-CLIP-ViT-H-14 |
|
--- |
|
## Official implementation of fine-tuned ViT-H/14 ProLIP on DataComp 1B |
|
|
|
- This weight is a fine-tuned version of ViT-H/14 by Probabilistic Language-Image Pre-Training (ProLIP) |
|
- Pre-trained weight |
|
- https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14 |
|
- Fine-tuned dataset |
|
- DataComp 1B / Seen samples 1.28B |
|
- Architectural difference |
|
- ProLIP text encoder uses the `[CLS]` token for pooling, while the original model uses the last token without specifying the `[CLS]` token. |
|
|
|
### Overview |
|
- Paper: https://arxiv.org/abs/2410.18857 |
|
- GitHub: https://github.com/naver-ai/prolip |
|
- More models are available at https://huggingface.co/collections/SanghyukChun/prolip-6712595dfc87fd8597350291 |
|
|
|
### Performance overview |
|
- Zero-shot ImageNet-1k top-1 accuracy: 79.4% |
|
- Zero-shot ImageNet distribution shifts: 68.3% |
|
- Zero-shot VTAB performance: 64.4% |
|
- Zero-shot retrieval performance: 61.6% |
|
- Average zero-shot performance on 38 tasks: 66.9% |
|
|
|
```python |
|
import requests |
|
from PIL import Image |
|
|
|
import torch |
|
from prolip.model import ProLIPHF |
|
from transformers import CLIPProcessor |
|
from prolip.tokenizer import HFTokenizer |
|
|
|
import warnings |
|
warnings.simplefilter(action='ignore', category=FutureWarning) |
|
|
|
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") |
|
model = ProLIPHF.from_pretrained("SanghyukChun/ProLIP-ViT-H-14-FT-DC-1B-1_28M") |
|
tokenizer = HFTokenizer("apple/DFN5B-CLIP-ViT-H-14", context_length=77) |
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
inputs = processor(images=image, return_tensors="pt", padding=True) |
|
texts = ["A couple of cats laying on top of a pink blanket.", "A man walks through a flooded road during a rainstorm", "photo"] |
|
texts = tokenizer(texts) |
|
|
|
outputs = model(image=inputs["pixel_values"], text=texts) |
|
|
|
l2_logit = outputs["image_features"]["mean"] @ outputs["text_features"]["mean"].T |
|
i_unc = torch.exp(outputs["image_features"]["std"]).sum(dim=-1) |
|
t_unc = torch.exp(outputs["text_features"]["std"]).sum(dim=-1) |
|
csd_logit = l2_logit - 0.5 * t_unc |
|
csd_logit2 = l2_logit.T - 0.5 * i_unc |
|
print("Mean-only image-to-text logits (by L2 distance):", l2_logit) |
|
print("Uncertainty-aware image-to-text logits (by CSD):", csd_logit) |
|
print("Uncertainty-aware text-to-image logits (by CSD):", csd_logit2.T) |
|
print("Image uncertainty: ", i_unc) |
|
print("Text uncertainty: ", t_unc) |
|
``` |
|
|
|
``` |
|
@article{chun2024prolip, |
|
title={Probabilistic Language-Image Pre-Training}, |
|
author={Chun, Sanghyuk and Kim, Wonjae and Park, Song and Yun, Sangdoo}, |
|
journal={arXiv preprint arXiv:2410.18857}, |
|
year={2024} |
|
} |
|
``` |