BERT_ep9_lr3

This model is a fine-tuned version of ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0904
  • Precision: 0.7736
  • Recall: 0.8277
  • F1: 0.7997
  • Accuracy: 0.9699

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 9

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 467 0.1271 0.6992 0.7545 0.7258 0.9582
0.1807 2.0 934 0.1061 0.7236 0.7831 0.7521 0.9638
0.126 3.0 1401 0.0988 0.7443 0.8029 0.7725 0.9663
0.113 4.0 1868 0.0954 0.7534 0.8183 0.7845 0.9677
0.1072 5.0 2335 0.0927 0.7634 0.8164 0.7890 0.9688
0.1014 6.0 2802 0.0918 0.7700 0.8255 0.7968 0.9694
0.0982 7.0 3269 0.0910 0.7726 0.8277 0.7992 0.9696
0.0977 8.0 3736 0.0905 0.7739 0.8282 0.8002 0.9698
0.0938 9.0 4203 0.0904 0.7736 0.8277 0.7997 0.9699

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
111
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.