|
--- |
|
language: |
|
- en |
|
base_model: |
|
- google-bert/bert-base-uncased |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- user |
|
- intent |
|
- intention |
|
- recognition |
|
widget: |
|
- text: "Sounds good. I'm interested in trying the free trial. How do I sign up?" |
|
--- |
|
|
|
## Get Started |
|
|
|
### Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("Savtale/User-Intention-Recognition") |
|
tokenizer = AutoTokenizer.from_pretrained("Savtale/User-Intention-Recognition") |
|
|
|
# User is talking with a chatbot |
|
input_user_text = "Sounds good. I'm interested in trying the free trial. How do I sign up?" |
|
|
|
# Tokenizing text |
|
inputs = tokenizer(input_user_text.lower(), return_tensors="pt") |
|
|
|
# Predict |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
# Prepare result |
|
probabilities = torch.softmax(logits, dim=-1) # Top Match |
|
predicted_class = int(torch.argmax(probabilities)) # Class no. |
|
str_predicted_class = class_dict[str(predicted_class)] # Class String |
|
|
|
print(f"Predicted User Intention: {str_predicted_class}") # Predicted User Intention: Request a Demo |
|
|
|
``` |
|
|
|
|
|
### Classes |
|
class_dict = { |
|
"0": "Ask For Technical Support", |
|
"1": "Ask General Question", |
|
"2": "Start Conversation", |
|
"3": "Express Dissatisfaction", |
|
"4": "Request Product Information", |
|
"5": "Inquire About Pricing", |
|
"6": "Negotiate Price", |
|
"7": "Request Return or Refund", |
|
"8": "Provide Positive Feedback", |
|
"9": "Provide Negative Feedback", |
|
"10": "Seek Recommendation", |
|
"11": "Request Customization", |
|
"12": "Ask About Shipping and Delivery", |
|
"13": "Inquire About Warranty and Support", |
|
"14": "Express Interest in Upselling", |
|
"15": "Express Interest in Cross-selling", |
|
"16": "Request Urgent Assistance", |
|
"17": "Ask About Promotions and Discounts", |
|
"18": "Inquire About Loyalty Programs", |
|
"19": "Request a Callback", |
|
"20": "Ask About Payment Options", |
|
"21": "Express Uncertainty", |
|
"22": "Request Clarification", |
|
"23": "Confirm Understanding", |
|
"24": "End Conversation", |
|
"25": "Express Gratitude", |
|
"26": "Apologize", |
|
"27": "Complain About Customer Service", |
|
"28": "Request a Manager", |
|
"29": "Ask About Company Policies", |
|
"30": "Inquire About Job Opportunities", |
|
"31": "Ask About Corporate Social Responsibility", |
|
"32": "Express Interest in Investing", |
|
"33": "Cancellation", |
|
"34": "Ask About Return Policy", |
|
"35": "Inquire About Sustainability Practices", |
|
"36": "Request a Catalog", |
|
"37": "Ask About Brand History", |
|
"38": "Express Interest in Partnership", |
|
"39": "Inquire About Franchise Opportunities", |
|
"40": "Ask About Corporate Events", |
|
"41": "Express Interest in Volunteering", |
|
"42": "Request a Referral", |
|
"43": "Ask About Gift Cards", |
|
"44": "Inquire About Product Availability", |
|
"45": "Request a Personalized Recommendation", |
|
"46": "Ask About Order Status", |
|
"47": "Express Interest in a Webinar or Workshop", |
|
"48": "Request a Demo", |
|
"49": "Ask About Social Media Channels" |
|
} |
|
|
|
|
|
## Authors |
|
- Savta |
|
|