|
--- |
|
language: |
|
- ko |
|
- en |
|
- jp |
|
- cn |
|
license: apache-2.0 |
|
library_name: transformers |
|
base_model: google/gemma-2-27b-it |
|
datasets: |
|
- Saxo/ko_cn_translation_tech_social_science_linkbricks_single_dataset |
|
- Saxo/ko_jp_translation_tech_social_science_linkbricks_single_dataset |
|
- Saxo/en_ko_translation_tech_science_linkbricks_single_dataset_with_prompt_text_huggingface |
|
- Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface |
|
- Saxo/ko_aspect_sentiment_sns_mall_sentiment_linkbricks_single_dataset_with_prompt_text_huggingface |
|
- Saxo/ko_summarization_linkbricks_single_dataset_with_prompt_text_huggingface |
|
- Saxo/OpenOrca_cleaned_kor_linkbricks_single_dataset_with_prompt_text_huggingface |
|
- Saxo/ko_government_qa_total_linkbricks_single_dataset_with_prompt_text_huggingface_sampled |
|
- Saxo/ko-news-corpus-1 |
|
- Saxo/ko-news-corpus-2 |
|
- Saxo/ko-news-corpus-3 |
|
- Saxo/ko-news-corpus-4 |
|
- Saxo/ko-news-corpus-5 |
|
- Saxo/ko-news-corpus-6 |
|
- Saxo/ko-news-corpus-7 |
|
- Saxo/ko-news-corpus-8 |
|
- Saxo/ko-news-corpus-9 |
|
- maywell/ko_Ultrafeedback_binarized |
|
- youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo |
|
- lilacai/glaive-function-calling-v2-sharegpt |
|
- kuotient/gsm8k-ko |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: Linkbricks-Horizon-AI-Korean-Superb-27B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 77.68 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 50.61 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 26.96 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 14.65 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 19.53 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 40.52 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<div align="center"> |
|
<img src="http://www.linkbricks.com/wp-content/uploads/2024/11/fulllogo.png" /> |
|
</div> |
|
|
|
|
|
AI ์ ๋น
๋ฐ์ดํฐ ๋ถ์ ์ ๋ฌธ ๊ธฐ์
์ธ Linkbricks์ ๋ฐ์ดํฐ์ฌ์ด์ธํฐ์คํธ์ธ ์ง์ค์ฑ(Saxo) ๋ฐ์ฌ๊ฐ <br> |
|
gemma-2-27b-it ๋ฒ ์ด์ค๋ชจ๋ธ์ ์ฌ์ฉํด์ H100-80G 8๊ฐ๋ฅผ ํตํด ์ฝ 38%์ ๋์ ํ๋ผ๋ฏธํฐ๋ฅผ ํ๊ตญ์ด CPT(Continued-Pretraining)->SFT->DPO ํ ํ๊ธ ์ธ์ด ๋ชจ๋ธ<br> |
|
9์ฒ๋ง๊ฑด์ ํ๊ธ ๋ด์ค ์ฝํผ์ค๋ฅผ ๊ธฐ์ค์ผ๋ก ๋ค์ํ ํ
์คํฌ๋ณ ํ๊ตญ์ด-์ค๊ตญ์ด-์์ด-์ผ๋ณธ์ด ๊ต์ฐจ ํ์ต ๋ฐ์ดํฐ์ ์ํ ๋ฐ ๋
ผ๋ฆฌํ๋จ ๋ฐ์ดํฐ๋ฅผ ํตํ์ฌ ํ์ค์ผ์ ์ธ์ด ๊ต์ฐจ ์ฆ๊ฐ ์ฒ๋ฆฌ์ ๋ณต์กํ ๋
ผ๋ฆฌ ๋ฌธ์ ์ญ์ ๋์ ๊ฐ๋ฅํ๋๋ก ํ๋ จํ ๋ชจ๋ธ์ด๋ค.<br> |
|
-ํ ํฌ๋์ด์ ๋ ๋จ์ด ํ์ฅ ์์ด ๋ฒ ์ด์ค ๋ชจ๋ธ ๊ทธ๋๋ก ์ฌ์ฉ<br> |
|
-๊ณ ๊ฐ ๋ฆฌ๋ทฐ๋ ์์
ํฌ์คํ
๊ณ ์ฐจ์ ๋ถ์ ๋ฐ ์ฝ๋ฉ๊ณผ ์๋ฌธ, ์ํ, ๋
ผ๋ฆฌํ๋จ ๋ฑ์ด ๊ฐํ๋ ๋ชจ๋ธ<br> |
|
-128k-Context Window<br> |
|
-Deepspeed Stage=3, rslora ๋ฐ BAdam Layer Mode ์ฌ์ฉ <br> |
|
"transformers_version": "4.46.1" |
|
<br><br> |
|
|
|
Finetuned by Mr. Yunsung Ji (Saxo), a data scientist at Linkbricks, a company specializing in AI and big data analytics <br> |
|
about 38% of total parameters Korean CPT(Continued-Pretraining)->SFT->DPO training model based on gemma-2-27b-it through 8 H100-80Gs as a Korean language model <br> |
|
It is a model that has been trained to handle Korean-Chinese-English-Japanese cross-training data and 90M korean news corpus and logic judgment data for various tasks to enable cross-fertilization processing and complex Korean logic & math problems. <br> |
|
-Tokenizer uses the base model without word expansion<br> |
|
-Models enhanced with high-dimensional analysis of customer reviews and social posts, as well as coding, writing, math and decision making<br> |
|
-128k-Context Window<br> |
|
-Deepspeed Stage=3, use rslora and BAdam Layer Mode<br> |
|
<br><br> |
|
|
|
<a href="www.linkbricks.com">www.linkbricks.com</a>, <a href="www.linkbricks.vc">www.linkbricks.vc</a> |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Saxo__Linkbricks-Horizon-AI-Korean-Superb-27B-details) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |38.32| |
|
|IFEval (0-Shot) |77.68| |
|
|BBH (3-Shot) |50.61| |
|
|MATH Lvl 5 (4-Shot)|26.96| |
|
|GPQA (0-shot) |14.65| |
|
|MuSR (0-shot) |19.53| |
|
|MMLU-PRO (5-shot) |40.52| |
|
|
|
|