File size: 2,240 Bytes
3fbabe1 f67b64f 3fbabe1 17c0a0f 4d78c76 3fbabe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
library_name: transformers
license: apache-2.0
basemodel: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- Saxo/total_ko_train_set_1_without_wiki_with_orca
language:
- ko
- en
pipeline_tag: text-generation
---
# Model Card for Model ID
<div align="center">
<img src="https://www.linkbricks.com/wp-content/uploads/2022/03/%E1%84%85%E1%85%B5%E1%86%BC%E1%84%8F%E1%85%B3%E1%84%87%E1%85%B3%E1%84%85%E1%85%B5%E1%86%A8%E1%84%89%E1%85%B3%E1%84%85%E1%85%A9%E1%84%80%E1%85%A9-2-1024x804.png" />
</div>
AI ์ ๋น
๋ฐ์ดํฐ ๋ถ์ ์ ๋ฌธ ๊ธฐ์
์ธ Linkbricks์ ๋ฐ์ดํฐ์ฌ์ด์ธํฐ์คํธ์ธ ์ง์ค์ฑ(Saxo) ์ด์ฌ๊ฐ meta-llama/Meta-Llama-3-8B๋ฅผ ๋ฒ ์ด์ค๋ชจ๋ธ๋ก GCP์์ H100-80G 8๊ฐ๋ฅผ ํตํด SFT-DPO ํ๋ จ์ ํ(8000 Tokens) ํ๊ธ ๊ธฐ๋ฐ ๋ชจ๋ธ.
ํ ํฌ๋์ด์ ๋ ๋ผ๋ง3๋ ๋์ผํ๋ฉฐ ํ๊ธ VOCA ํ์ฅ์ ํ์ง ์์ ๋ฒ์ ์
๋๋ค. ํ๊ธ์ด 20๋ง๊ฐ ์ด์ ํฌํจ๋ ํ๊ธ์ ์ฉ ํ ํฌ๋์ด์ ๋ชจ๋ธ์ ๋ณ๋ ์ฐ๋ฝ ์ฃผ์๊ธฐ ๋ฐ๋๋๋ค.
Dr. Yunsung Ji (Saxo), a data scientist at Linkbricks, a company specializing in AI and big data analytics, trained the meta-llama/Meta-Llama-3-8B base model on 8 H100-60Gs on GCP for 4 hours of instructional training (8000 Tokens).
Accelerate, Deepspeed Zero-3 libraries were used.
www.linkbricks.com, www.linkbricks.vc
## Configuration including BitsandBytes
---
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype
)
args = TrainingArguments(
output_dir=project_name,
run_name=run_name_str,
overwrite_output_dir=True,
num_train_epochs=20,
per_device_train_batch_size=1,
gradient_accumulation_steps=4, #1
gradient_checkpointing=True,
optim="paged_adamw_32bit",
#optim="adamw_8bit",
logging_steps=10,
save_steps=100,
save_strategy="epoch",
learning_rate=2e-4, #2e-4
weight_decay=0.01,
max_grad_norm=1, #0.3
max_steps=-1,
warmup_ratio=0.1,
group_by_length=False,
fp16 = not torch.cuda.is_bf16_supported(),
bf16 = torch.cuda.is_bf16_supported(),
#fp16 = True,
lr_scheduler_type="cosine", #"constant",
disable_tqdm=False,
report_to='wandb',
push_to_hub=False
)
|