bc-erniem-viwikifc / README.md
xuandin's picture
Add library name and link to code (#1)
9825912 verified
metadata
language:
  - vi
library_name: transformers
license: mit
pipeline_tag: text-classification
tags:
  - SemViQA
  - binary-classification
  - fact-checking

SemViQA-BC: Vietnamese Binary Classification for Claim Verification

Model Description

SemViQA-BC is a core component of the SemViQA system, specifically designed for binary classification in Vietnamese fact-checking tasks. This model predicts whether a given claim is SUPPORTED or REFUTED based on retrieved evidence.

Model Information

SemViQA-BC is one of the key components of the two-step classification approach in the SemViQA system. It focuses on binary classification, determining whether a claim is SUPPORTED or REFUTED. This step follows an initial three-class classification, where claims are first categorized as SUPPORTED, REFUTED, or NOT ENOUGH INFORMATION (NEI). By incorporating Cross-Entropy Loss and Focal Loss, SemViQA-BC enhances precision in claim verification, ensuring more accurate fact-checking results

Usage Example

Direct Model Usage

# Install semviqa
!pip install semviqa

# Initalize a pipeline
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer
from semviqa.tvc.model import ClaimModelForClassification

tokenizer = AutoTokenizer.from_pretrained("SemViQA/bc-erniem-viwikifc")
model = ClaimModelForClassification.from_pretrained("SemViQA/bc-erniem-viwikifc", num_labels=2)
claim = "Chiến tranh với Campuchia đã kết thúc trước khi Việt Nam thống nhất."
evidence = "Sau khi thống nhất, Việt Nam tiếp tục gặp khó khăn do sự sụp đổ và tan rã của đồng minh Liên Xô cùng Khối phía Đông, các lệnh cấm vận của Hoa Kỳ, chiến tranh với Campuchia, biên giới giáp Trung Quốc và hậu quả của chính sách bao cấp sau nhiều năm áp dụng."

inputs = tokenizer(
    claim,
    evidence,
    truncation="only_second",
    add_special_tokens=True,
    max_length=256,
    padding='max_length',
    return_attention_mask=True,
    return_token_type_ids=False,
    return_tensors='pt',
)

labels = ["SUPPORTED", "REFUTED"]

with torch.no_grad():
    outputs = model(**inputs)

logits = outputs["logits"]
probabilities = F.softmax(logits, dim=1).squeeze()

for i, (label, prob) in enumerate(zip(labels, probabilities.tolist()), start=1):
    print(f"{i}) {label} {prob:.4f}")
# 1) SUPPORTED 0.0066
# 2) REFUTED 0.9934

Citation

If you use SemViQA-BC in your research, please cite:

@misc{nguyen2025semviqasemanticquestionanswering,
      title={SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking},
      author={Nam V. Nguyen and Dien X. Tran and Thanh T. Tran and Anh T. Hoang and Tai V. Duong and Di T. Le and Phuc-Lu Le},
      year={2025},
      eprint={2503.00955},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2503.00955},
}

🔗 Paper Link: SemViQA on arXiv
🔗 Source Code: GitHub - SemViQA

About

Built by Dien X. Tran LinkedIn For more details, visit the project repository. GitHub stars