SemViQA-TC: Vietnamese Three-class Classification for Claim Verification
Model Description
SemViQA-TC is one of the key components of the SemViQA system, designed for three-class classification in Vietnamese fact-checking. This model classifies a given claim into one of three categories: SUPPORTED, REFUTED, or NOT ENOUGH INFORMATION (NEI) based on retrieved evidence. It serves as the first step in the SemViQA system's two-step classification process. It initially categorizes claims, and for those classified as SUPPORTED or REFUTED, a secondary binary classification model (SemViQA-BC) further refines the prediction. This hierarchical approach enhances fact-checking accuracy.
Model Information
- Developed by: SemViQA Research Team
- Fine-tuned model: Ernie-M
- Supported Language: Vietnamese
- Task: Three-Class Classification (Fact Verification)
- Dataset: ViWikiFC
Usage Example
Direct Model Usage
# Install semviqa
!pip install semviqa
# Initalize a pipeline
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer
from semviqa.tvc.model import ClaimModelForClassification
tokenizer = AutoTokenizer.from_pretrained("SemViQA/tc-erniem-viwikifc")
model = ClaimModelForClassification.from_pretrained("SemViQA/tc-erniem-viwikifc")
claim = "Chiến tranh với Campuchia đã kết thúc trước khi Việt Nam thống nhất."
evidence = "Sau khi thống nhất, Việt Nam tiếp tục gặp khó khăn do sự sụp đổ và tan rã của đồng minh Liên Xô cùng Khối phía Đông, các lệnh cấm vận của Hoa Kỳ, chiến tranh với Campuchia, biên giới giáp Trung Quốc và hậu quả của chính sách bao cấp sau nhiều năm áp dụng."
inputs = tokenizer(
claim,
evidence,
truncation="only_second",
add_special_tokens=True,
max_length=256,
padding='max_length',
return_attention_mask=True,
return_token_type_ids=False,
return_tensors='pt',
)
labels = ["NEI", "SUPPORTED", "REFUTED"]
with torch.no_grad():
outputs = model(**inputs)
logits = outputs["logits"]
probabilities = F.softmax(logits, dim=1).squeeze()
for i, (label, prob) in enumerate(zip(labels, probabilities.tolist()), start=1):
print(f"{i}) {label} {prob:.4f}")
# 1) NEI 0.0002
# 2) SUPPORTED 0.0000
# 3) REFUTED 0.9998
Citation
If you use SemViQA-TC in your research, please cite:
@misc{nguyen2025semviqasemanticquestionanswering,
title={SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking},
author={Nam V. Nguyen and Dien X. Tran and Thanh T. Tran and Anh T. Hoang and Tai V. Duong and Di T. Le and Phuc-Lu Le},
year={2025},
eprint={2503.00955},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.00955},
}
🔗 Paper Link: SemViQA on arXiv
🔗 Source Code: GitHub - SemViQA
- Downloads last month
- 24
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.