eladven's picture
Evaluation results for SetFit/deberta-v3-base__sst2__all-train model as a base model for other tasks
09f02c8
|
raw
history blame
4.22 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: deberta-v3-base__sst2__all-train
    results: []

deberta-v3-base__sst2__all-train

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6964
  • Accuracy: 0.49

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 7 0.6964 0.49
No log 2.0 14 0.7010 0.49
No log 3.0 21 0.7031 0.49
No log 4.0 28 0.7054 0.49

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2
  • Tokenizers 0.10.3

Model Recycling

Evaluation on 36 datasets using SetFit/deberta-v3-base__sst2__all-train as a base model yields average score of 79.14 in comparison to 79.04 by microsoft/deberta-v3-base.

The model is ranked 3rd among all tested models for the microsoft/deberta-v3-base architecture as of 09/01/2023 Results:

20_newsgroup ag_news amazon_reviews_multi anli boolq cb cola copa dbpedia esnli financial_phrasebank imdb isear mnli mrpc multirc poem_sentiment qnli qqp rotten_tomatoes rte sst2 sst_5bins stsb trec_coarse trec_fine tweet_ev_emoji tweet_ev_emotion tweet_ev_hate tweet_ev_irony tweet_ev_offensive tweet_ev_sentiment wic wnli wsc yahoo_answers
86.4711 90.8 66.94 59.4063 84.4343 78.5714 86.9607 57 80 91.3986 86 94.452 71.6428 89.5952 90.1961 64.2533 87.5 93.3187 91.9936 90.2439 81.5884 94.7248 56.3801 89.96 98 90.8 47.014 84.4476 52.2896 78.8265 84.8837 70.8401 72.4138 67.6056 66.3462 71.7667

For more information, see: Model Recycling