Whisper Base Afri

This model is a fine-tuned version of openai/whisper-base on the Afrispeech-200 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8098
  • Wer Ortho: 0.3333
  • Wer: 0.2699
  • Cer: 0.1331
  • Precision: 0.8395
  • Recall: 0.8400
  • F1: 0.8390

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer Cer Precision Recall F1
0.7695 0.2902 500 0.8098 0.3333 0.2699 0.1331 0.8395 0.8400 0.8390

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
21
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Setosm/whisper-base-afri

Finetuned
(425)
this model