SeyedAli's picture
Update README.md
c5a4787 verified
|
raw
history blame
4.57 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: Melanoma-Classification
    results: []

Melanoma-Classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the SeyedAli/Skin-Lesion-Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5750
  • Accuracy: 0.8167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9779 0.08 100 1.1158 0.6041
0.9934 0.16 200 1.0227 0.6501
0.9562 0.24 300 0.9276 0.6748
1.0995 0.32 400 0.9088 0.6836
0.8198 0.39 500 0.8581 0.6949
0.8034 0.47 600 0.8444 0.6967
0.8319 0.55 700 0.8196 0.7148
0.787 0.63 800 0.8360 0.6975
0.8642 0.71 900 0.8250 0.7008
0.8329 0.79 1000 0.7939 0.7172
0.9678 0.87 1100 0.7661 0.7332
0.8226 0.95 1200 0.7284 0.7373
0.7967 1.03 1300 0.7355 0.7411
0.6531 1.1 1400 0.7561 0.7247
0.5719 1.18 1500 0.6839 0.7638
0.6123 1.26 1600 0.6857 0.7584
0.6504 1.34 1700 0.6970 0.7531
0.6214 1.42 1800 0.6841 0.7576
0.4925 1.5 1900 0.6624 0.7642
0.5797 1.58 2000 0.6287 0.7709
0.6018 1.66 2100 0.6537 0.7622
0.6334 1.74 2200 0.6413 0.7713
0.4111 1.82 2300 0.6242 0.7786
0.4779 1.89 2400 0.6260 0.7790
0.5488 1.97 2500 0.6146 0.7807
0.3212 2.05 2600 0.6975 0.7707
0.4282 2.13 2700 0.6344 0.7790
0.2822 2.21 2800 0.6985 0.7845
0.3003 2.29 2900 0.5954 0.7993
0.2982 2.37 3000 0.6156 0.7940
0.2628 2.45 3100 0.6318 0.7963
0.2987 2.53 3200 0.6495 0.8030
0.2714 2.6 3300 0.6018 0.8052
0.3059 2.68 3400 0.5944 0.8078
0.2762 2.76 3500 0.6296 0.7936
0.3685 2.84 3600 0.6277 0.8017
0.2299 2.92 3700 0.5834 0.8125
0.3414 3.0 3800 0.5750 0.8167
0.1082 3.08 3900 0.6201 0.8196
0.049 3.16 4000 0.6475 0.8161
0.102 3.24 4100 0.6791 0.8097
0.0483 3.31 4200 0.6582 0.8216
0.1204 3.39 4300 0.6603 0.8222
0.0611 3.47 4400 0.7174 0.8190
0.0555 3.55 4500 0.6841 0.8236
0.0188 3.63 4600 0.7009 0.8240
0.1292 3.71 4700 0.7040 0.8204
0.0661 3.79 4800 0.7074 0.8238
0.1061 3.87 4900 0.6984 0.8210
0.0861 3.95 5000 0.6913 0.8230

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2