outputs

This model is a fine-tuned version of csebuetnlp/banglabert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2073
  • 5 Err Precision: 0.0
  • 5 Err Recall: 0.0
  • 5 Err F1: 0.0
  • 5 Err Number: 34
  • Precision: 0.3586
  • Recall: 0.2192
  • F1: 0.2721
  • Number: 9934
  • Err Precision: 0.0
  • Err Recall: 0.0
  • Err F1: 0.0
  • Err Number: 285
  • Egin Err Precision: 0.9184
  • Egin Err Recall: 0.0400
  • Egin Err F1: 0.0766
  • Egin Err Number: 1126
  • El Err Precision: 0.8718
  • El Err Recall: 0.1478
  • El Err F1: 0.2528
  • El Err Number: 1380
  • Nd Err Precision: 0.7453
  • Nd Err Recall: 0.1995
  • Nd Err F1: 0.3147
  • Nd Err Number: 1188
  • Ne Word Err Precision: 0.6677
  • Ne Word Err Recall: 0.5206
  • Ne Word Err F1: 0.5850
  • Ne Word Err Number: 8247
  • Unc Insert Err Precision: 1.0
  • Unc Insert Err Recall: 0.0011
  • Unc Insert Err F1: 0.0022
  • Unc Insert Err Number: 902
  • Micro Avg Precision: 0.5309
  • Micro Avg Recall: 0.3013
  • Micro Avg F1: 0.3844
  • Micro Avg Number: 23096
  • Macro Avg Precision: 0.5702
  • Macro Avg Recall: 0.1410
  • Macro Avg F1: 0.1879
  • Macro Avg Number: 23096
  • Weighted Avg Precision: 0.5669
  • Weighted Avg Recall: 0.3013
  • Weighted Avg F1: 0.3611
  • Weighted Avg Number: 23096
  • Overall Accuracy: 0.9419

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss 5 Err Precision 5 Err Recall 5 Err F1 5 Err Number Precision Recall F1 Number Err Precision Err Recall Err F1 Err Number Egin Err Precision Egin Err Recall Egin Err F1 Egin Err Number El Err Precision El Err Recall El Err F1 El Err Number Nd Err Precision Nd Err Recall Nd Err F1 Nd Err Number Ne Word Err Precision Ne Word Err Recall Ne Word Err F1 Ne Word Err Number Unc Insert Err Precision Unc Insert Err Recall Unc Insert Err F1 Unc Insert Err Number Micro Avg Precision Micro Avg Recall Micro Avg F1 Micro Avg Number Macro Avg Precision Macro Avg Recall Macro Avg F1 Macro Avg Number Weighted Avg Precision Weighted Avg Recall Weighted Avg F1 Weighted Avg Number Overall Accuracy
0.3677 1.0 575 0.2073 0.0 0.0 0.0 34 0.3586 0.2192 0.2721 9934 0.0 0.0 0.0 285 0.9184 0.0400 0.0766 1126 0.8718 0.1478 0.2528 1380 0.7453 0.1995 0.3147 1188 0.6677 0.5206 0.5850 8247 1.0 0.0011 0.0022 902 0.5309 0.3013 0.3844 23096 0.5702 0.1410 0.1879 23096 0.5669 0.3013 0.3611 23096 0.9419

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.