File size: 4,034 Bytes
c00f54d 047068c c00f54d 047068c c00f54d 047068c c00f54d 13f9e76 c00f54d 13f9e76 c00f54d 3f408e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- financial_phrasebank
metrics:
- f1
model-index:
- name: Finance_DistilBERT_sentiment
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: financial_phrasebank
type: financial_phrasebank
config: sentences_75agree
split: train
args: sentences_75agree
metrics:
- type: f1
value: 0.9101001493367561
name: F1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Finance_DistilBERT_sentiment
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the financial_phrasebank dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2763
- F1: 0.9101
- Acc: 0.9088
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 12
### Training results (Final epoch)
| Training Loss | Epoch | Step | Validation Loss | F1 | Acc |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.0975 | 1.0 | 87 | 0.2763 | 0.9101 | 0.9088 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
```python
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from IPython.display import display, HTML
import numpy as np
from transformers import pipeline
%matplotlib inline
# Pipelines
classifier = pipeline("text-classification", model="Sharpaxis/Finance_DistilBERT_sentiment", top_k=None)
pipe = pipeline("text-classification", model="Sharpaxis/News_classification_distilbert")
def finance_text_predictor(text):
text = str(text)
out = classifier(text)[0]
type_news = pipe(text)[0]
# Display news type and text in HTML
if type_news['label'] == 'LABEL_1':
display(HTML(f"""
<div style="border: 2px solid red; padding: 10px; margin: 10px; background-color: #ffe6e6; color: black; font-weight: bold;">
IMPORTANT TECH/FIN News<br>
<div style="margin-top: 10px; font-weight: normal; font-size: 14px; color: darkred;">{text}</div>
</div>
"""))
elif type_news['label'] == 'LABEL_0':
display(HTML(f"""
<div style="border: 2px solid green; padding: 10px; margin: 10px; background-color: #e6ffe6; color: black; font-weight: bold;">
NON IMPORTANT NEWS<br>
<div style="margin-top: 10px; font-weight: normal; font-size: 14px; color: darkgreen;">{text}</div>
</div>
"""))
# Sentiment analysis scores
scores = [sample['score'] for sample in out]
labels = [sample['label'] for sample in out]
label_map = {'LABEL_0': "Negative", 'LABEL_1': "Neutral", 'LABEL_2': "Positive"}
sentiments = [label_map[label] for label in labels]
print("SCORES")
for i in range(len(scores)):
print(f"{sentiments[i]} : {scores[i]:.4f}")
print(f"Sentiment of text is {sentiments[np.argmax(scores)]}")
# Bar chart for sentiment scores
fig = go.Figure(
data=[go.Bar(x=sentiments, y=scores, marker=dict(color=["red", "blue", "green"]), width=0.3)]
)
fig.update_layout(
title="Sentiment Analysis Scores",
xaxis_title="Sentiments",
yaxis_title="Scores",
template="plotly_dark"
)
fig.show() |