Edit model card

Generate Cover Letter

from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "ShashiVish/llama-7b-merged-int4-r512-cover-letter"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)


model = model.to('cuda')

job_title = "Senior Java Developer"
preferred_qualification = "3+ years of Java, Spring Boot"
hiring_company_name = "Google"
user_name = "Emily Evans"
past_working_experience= "Java Developer at XYZ for 4 years"
current_working_experience = "Senior Java Developer at ABC for 1 year"
skilleset= "Java, Spring Boot, Microservices, SQL, AWS"
qualification = "Master's in Electronics Science"

item = {'job_title': "Senior Java Developer", 'preferred_qualification': "5+ years of Java, Spring Boot",
            'hiring_company_name': "Netflix", 'user_name': "Emily Evans",
            'past_working_experience': "Java Developer at XYZ for 4 years",
            'current_working_experience': "Senior Java Developer at ABC for 1 year",
            'skilleset': "Java, Spring Boot, Microservices, SQL, AWS",
            'qualification': "Master's in Computer Science"}

prompt = f"""### Instruction:
You are a smart cover letter generator. Use following Input to generate Cover letter.

### Input:
Role: item['job_title'], Preferred Qualifications: {item['preferred_qualification']}, \
                        Hiring Company: {item['hiring_company_name']}, User Name: {item['user_name']}, \
                        Past Working Experience: {item['past_working_experience']}, \
                        Current Working Experience: {item['current_working_experience']}, \
                        Skillsets: {item['skilleset']}, Qualifications: {item['qualification']}

### Cover Letter:
"""

input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
outputs = model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True, top_p=0.9,temperature=0.9)
#model_response = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]
model_response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0][len(prompt):]

print(model_response)
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ShashiVish/llama-7b-merged-int4-r512-cover-letter