Model Trained Using AutoTrain

  • Problem type: Sentence Transformers

Validation Metrics

loss: 6.586054801940918

validation_pearson_cosine: 0.15590647163663807

validation_spearman_cosine: 0.28867513459481287

validation_pearson_manhattan: 0.20874094632850035

validation_spearman_manhattan: 0.28867513459481287

validation_pearson_euclidean: 0.21989747670451043

validation_spearman_euclidean: 0.28867513459481287

validation_pearson_dot: 0.15590640231031966

validation_spearman_dot: 0.28867513459481287

validation_pearson_max: 0.21989747670451043

validation_spearman_max: 0.28867513459481287

runtime: 0.1469

samples_per_second: 34.037

steps_per_second: 6.807

: 3.0

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the Hugging Face Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'search_query: autotrain',
    'search_query: auto train',
    'search_query: i love autotrain',
]
embeddings = model.encode(sentences)
print(embeddings.shape)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Downloads last month
21
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ShauryaNova/autotrain-ShauryaNova

Finetuned
(193)
this model

Space using ShauryaNova/autotrain-ShauryaNova 1