ViViT_WLASL_250_epochs

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0544
  • Top 1 Accuracy: 0.2617
  • Top 5 Accuracy: 0.5577
  • Top 10 Accuracy: 0.6670
  • Accuracy: 0.2617
  • Precision: 0.2325
  • Recall: 0.2617
  • F1: 0.2253

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 893000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Top 1 Accuracy Top 5 Accuracy Top 10 Accuracy Accuracy Precision Recall F1
30.5598 0.004 3572 7.6528 0.0010 0.0038 0.0064 0.0010 0.0008 0.0010 0.0004
29.9841 1.0040 7144 7.5548 0.0046 0.0120 0.0176 0.0046 0.0006 0.0046 0.0009
28.2597 2.0040 10716 7.2959 0.0125 0.0337 0.0495 0.0125 0.0053 0.0125 0.0048
26.1127 3.0040 14289 6.9165 0.0304 0.0748 0.1223 0.0301 0.0108 0.0301 0.0120
23.7044 4.004 17861 6.4996 0.0447 0.1407 0.2102 0.0447 0.0182 0.0447 0.0196
20.6604 5.0040 21433 6.0328 0.0822 0.2288 0.3121 0.0822 0.0421 0.0822 0.0434
17.6287 6.0040 25005 5.5622 0.1210 0.3041 0.4213 0.1210 0.0714 0.1210 0.0742
14.3215 7.0040 28578 5.0794 0.1576 0.3797 0.4951 0.1573 0.0998 0.1573 0.1038
10.5032 8.004 32150 4.6439 0.1915 0.4494 0.5695 0.1915 0.1353 0.1915 0.1386
7.2387 9.0040 35722 4.2461 0.2247 0.5123 0.6297 0.2255 0.1676 0.2255 0.1721
3.9708 10.0040 39294 3.9632 0.2485 0.5587 0.6701 0.2487 0.2034 0.2487 0.2046
2.1244 11.0040 42867 3.7748 0.2587 0.5753 0.6872 0.2587 0.2258 0.2587 0.2220
1.3992 12.004 46439 3.6907 0.2543 0.5794 0.6885 0.2543 0.2279 0.2543 0.2210
1.0175 13.0040 50011 3.7060 0.2503 0.5738 0.6874 0.2503 0.2176 0.2503 0.2142
0.914 14.0040 53583 3.6819 0.2648 0.5804 0.6915 0.2648 0.2380 0.2648 0.2311
0.7522 15.0040 57156 3.7360 0.2561 0.5758 0.6969 0.2564 0.2325 0.2564 0.2235
1.045 16.004 60728 3.7846 0.2638 0.5723 0.6877 0.2635 0.2470 0.2635 0.2327
0.8234 17.0040 64300 3.8910 0.2574 0.5692 0.6724 0.2572 0.2386 0.2572 0.2261
0.7311 18.0040 67872 4.0142 0.2561 0.5585 0.6680 0.2561 0.2402 0.2561 0.2262
1.0981 19.0040 71445 4.0544 0.2617 0.5577 0.6670 0.2617 0.2325 0.2617 0.2253

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
7
Safetensors
Model size
90.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Shawon16/ViViT_WLASL_250_epochs

Finetuned
(60)
this model