ViViT_default_fold__4__10_epoch_Aug_batch_2_4_BdSLW60

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7884
  • Accuracy: 0.6889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 9030

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6984 0.1 903 0.4381 0.9141
0.1951 1.1001 1807 0.0468 0.9826
0.1833 2.1 2710 0.0987 0.9751
0.0932 3.1001 3614 0.0408 0.9888
0.0198 4.1 4517 0.0676 0.9851
0.024 5.1001 5421 0.0530 0.9888
0.0038 6.1 6324 0.0729 0.9875
0.0026 7.1001 7228 0.0417 0.9913
0.004 8.1 8131 0.0587 0.9913
0.0045 9.0995 9030 0.0383 0.9900

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
0
Safetensors
Model size
88.7M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Shawon16/ViViT_default_fold__4__10_epoch_Aug_batch_2_4_BdSLW60

Finetuned
(51)
this model