VideoMAE_WLASL_100_200_epochs_p20_SR_8_again

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6313
  • Top 1 Accuracy: 0.4408
  • Top 5 Accuracy: 0.7456
  • Top 10 Accuracy: 0.8254
  • Accuracy: 0.4408
  • Precision: 0.5153
  • Recall: 0.4408
  • F1: 0.4320

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 36000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Top 1 Accuracy Top 5 Accuracy Top 10 Accuracy Accuracy Precision Recall F1
18.7179 0.005 180 4.6606 0.0118 0.0503 0.1006 0.0118 0.0008 0.0118 0.0015
18.5895 1.0050 360 4.6279 0.0266 0.0740 0.1065 0.0266 0.0048 0.0266 0.0055
18.4949 2.0050 540 4.6162 0.0296 0.0858 0.1450 0.0296 0.0040 0.0296 0.0068
18.4563 3.0050 721 4.6074 0.0325 0.0740 0.1124 0.0325 0.0026 0.0325 0.0046
18.4839 4.005 901 4.6099 0.0237 0.0799 0.1243 0.0237 0.0012 0.0237 0.0022
18.2388 5.0050 1081 4.6018 0.0237 0.0710 0.1450 0.0237 0.0017 0.0237 0.0030
18.2327 6.0050 1261 4.6311 0.0207 0.0621 0.1213 0.0207 0.0035 0.0207 0.0057
18.146 7.0050 1442 4.6073 0.0148 0.0917 0.1568 0.0148 0.0014 0.0148 0.0026
17.979 8.005 1622 4.6589 0.0148 0.0858 0.1302 0.0148 0.0009 0.0148 0.0017
17.7095 9.0050 1802 4.5615 0.0237 0.1006 0.1716 0.0237 0.0052 0.0237 0.0070
17.1282 10.0050 1982 4.3098 0.0473 0.1509 0.2485 0.0473 0.0101 0.0473 0.0115
16.1191 11.0050 2163 4.0549 0.0444 0.2544 0.3846 0.0444 0.0253 0.0444 0.0200
14.7815 12.005 2343 3.7599 0.1095 0.3402 0.5296 0.1095 0.0711 0.1095 0.0726
13.6312 13.0050 2523 3.5324 0.1509 0.4320 0.5947 0.1509 0.0861 0.1509 0.0937
11.9507 14.0050 2703 3.2292 0.2101 0.5444 0.7130 0.2101 0.1555 0.2101 0.1575
10.5467 15.0050 2884 3.0303 0.2367 0.5562 0.7219 0.2367 0.1863 0.2367 0.1805
8.8902 16.005 3064 2.7703 0.3491 0.6479 0.8077 0.3491 0.3817 0.3491 0.3127
7.4374 17.0050 3244 2.5973 0.3905 0.7130 0.8136 0.3905 0.3510 0.3905 0.3365
6.1127 18.0050 3424 2.3462 0.4320 0.7337 0.8580 0.4320 0.4674 0.4320 0.4055
5.1867 19.0050 3605 2.3088 0.4201 0.7515 0.8639 0.4201 0.4386 0.4201 0.4045
4.0661 20.005 3785 2.3607 0.3876 0.7189 0.8402 0.3905 0.4236 0.3905 0.3654
3.1864 21.0050 3965 2.2799 0.4201 0.7574 0.8462 0.4201 0.4789 0.4201 0.3998
2.5534 22.0050 4145 2.2289 0.4260 0.7249 0.8669 0.4260 0.4547 0.4260 0.4115
1.8595 23.0050 4326 2.0805 0.4467 0.7899 0.8728 0.4467 0.4872 0.4467 0.4271
1.6117 24.005 4506 2.0355 0.4793 0.7781 0.8846 0.4793 0.5106 0.4793 0.4609
1.1388 25.0050 4686 2.0650 0.5178 0.7663 0.8639 0.5178 0.5759 0.5178 0.5051
0.8489 26.0050 4866 1.9968 0.5178 0.7811 0.8787 0.5178 0.5630 0.5178 0.5011
0.7129 27.0050 5047 2.1062 0.5296 0.7663 0.8639 0.5296 0.5699 0.5296 0.5064
0.6167 28.005 5227 2.2424 0.4822 0.7781 0.8669 0.4822 0.5333 0.4822 0.4601
0.5676 29.0050 5407 2.3891 0.4408 0.7485 0.8580 0.4408 0.5477 0.4408 0.4309
0.4871 30.0050 5587 2.1354 0.4882 0.8136 0.9172 0.4911 0.5456 0.4911 0.4713
0.3447 31.0050 5768 2.1996 0.5118 0.8107 0.8787 0.5118 0.5613 0.5118 0.4931
0.358 32.005 5948 2.2036 0.5178 0.8136 0.8964 0.5178 0.5841 0.5178 0.5025
0.1964 33.0050 6128 2.2685 0.5059 0.8047 0.9053 0.5059 0.5579 0.5059 0.4902
0.2698 34.0050 6308 2.3974 0.5089 0.7959 0.8669 0.5089 0.5442 0.5089 0.4919
0.2084 35.0050 6489 2.5295 0.5148 0.8136 0.8550 0.5148 0.5617 0.5148 0.4948
0.2268 36.005 6669 2.3980 0.5385 0.8195 0.8728 0.5385 0.5945 0.5385 0.5275
0.1354 37.0050 6849 2.4901 0.5592 0.7959 0.8669 0.5592 0.6243 0.5592 0.5483
0.1738 38.0050 7029 2.6473 0.5178 0.7722 0.8757 0.5178 0.5754 0.5178 0.5004
0.1795 39.0050 7210 2.5686 0.5414 0.7929 0.8876 0.5414 0.6179 0.5414 0.5320
0.1308 40.005 7390 2.5885 0.5089 0.8018 0.8787 0.5089 0.5755 0.5089 0.5035
0.1935 41.0050 7570 2.8128 0.4970 0.7988 0.8787 0.4970 0.5563 0.4970 0.4846
0.1201 42.0050 7750 2.6633 0.5355 0.8018 0.8757 0.5355 0.5693 0.5355 0.5190
0.1912 43.0050 7931 2.8220 0.5059 0.7811 0.8580 0.5059 0.5849 0.5059 0.4903
0.18 44.005 8111 3.0467 0.4734 0.7456 0.8462 0.4734 0.5019 0.4734 0.4495
0.2313 45.0050 8291 2.6114 0.5503 0.8077 0.8669 0.5503 0.5798 0.5503 0.5284
0.0689 46.0050 8471 2.8944 0.5148 0.7811 0.8580 0.5148 0.5561 0.5148 0.4981
0.0908 47.0050 8652 2.8956 0.5355 0.7692 0.8669 0.5355 0.5728 0.5355 0.5168
0.0942 48.005 8832 2.8800 0.5148 0.7781 0.8402 0.5148 0.5448 0.5148 0.4965
0.2255 49.0050 9012 3.1947 0.4941 0.7633 0.8343 0.4941 0.5324 0.4941 0.4762
0.1361 50.0050 9192 2.8410 0.5385 0.7663 0.8609 0.5385 0.5815 0.5385 0.5195
0.1301 51.0050 9373 3.1655 0.5089 0.7604 0.8491 0.5118 0.5529 0.5118 0.4932
0.1755 52.005 9553 3.6231 0.4349 0.7219 0.8166 0.4349 0.4579 0.4349 0.4119
0.1833 53.0050 9733 3.1796 0.5059 0.7781 0.8521 0.5059 0.5421 0.5059 0.4865
0.2115 54.0050 9913 3.2417 0.4970 0.7574 0.8343 0.4970 0.5495 0.4970 0.4810
0.2306 55.0050 10094 3.1876 0.4911 0.7367 0.8343 0.4911 0.5179 0.4911 0.4726
0.119 56.005 10274 3.2365 0.4941 0.7367 0.8284 0.4941 0.5319 0.4941 0.4723
0.1542 57.0050 10454 3.6313 0.4408 0.7456 0.8254 0.4408 0.5153 0.4408 0.4320

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
2
Safetensors
Model size
86.3M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Shawon16/VideoMAE_WLASL_100_200_epochs_p20_SR_8_again

Finetuned
(443)
this model