VideoMAE_WLASL_100_200_epochs_p20_SR_8_again
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.6313
- Top 1 Accuracy: 0.4408
- Top 5 Accuracy: 0.7456
- Top 10 Accuracy: 0.8254
- Accuracy: 0.4408
- Precision: 0.5153
- Recall: 0.4408
- F1: 0.4320
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 36000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Top 1 Accuracy | Top 5 Accuracy | Top 10 Accuracy | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|---|---|---|
18.7179 | 0.005 | 180 | 4.6606 | 0.0118 | 0.0503 | 0.1006 | 0.0118 | 0.0008 | 0.0118 | 0.0015 |
18.5895 | 1.0050 | 360 | 4.6279 | 0.0266 | 0.0740 | 0.1065 | 0.0266 | 0.0048 | 0.0266 | 0.0055 |
18.4949 | 2.0050 | 540 | 4.6162 | 0.0296 | 0.0858 | 0.1450 | 0.0296 | 0.0040 | 0.0296 | 0.0068 |
18.4563 | 3.0050 | 721 | 4.6074 | 0.0325 | 0.0740 | 0.1124 | 0.0325 | 0.0026 | 0.0325 | 0.0046 |
18.4839 | 4.005 | 901 | 4.6099 | 0.0237 | 0.0799 | 0.1243 | 0.0237 | 0.0012 | 0.0237 | 0.0022 |
18.2388 | 5.0050 | 1081 | 4.6018 | 0.0237 | 0.0710 | 0.1450 | 0.0237 | 0.0017 | 0.0237 | 0.0030 |
18.2327 | 6.0050 | 1261 | 4.6311 | 0.0207 | 0.0621 | 0.1213 | 0.0207 | 0.0035 | 0.0207 | 0.0057 |
18.146 | 7.0050 | 1442 | 4.6073 | 0.0148 | 0.0917 | 0.1568 | 0.0148 | 0.0014 | 0.0148 | 0.0026 |
17.979 | 8.005 | 1622 | 4.6589 | 0.0148 | 0.0858 | 0.1302 | 0.0148 | 0.0009 | 0.0148 | 0.0017 |
17.7095 | 9.0050 | 1802 | 4.5615 | 0.0237 | 0.1006 | 0.1716 | 0.0237 | 0.0052 | 0.0237 | 0.0070 |
17.1282 | 10.0050 | 1982 | 4.3098 | 0.0473 | 0.1509 | 0.2485 | 0.0473 | 0.0101 | 0.0473 | 0.0115 |
16.1191 | 11.0050 | 2163 | 4.0549 | 0.0444 | 0.2544 | 0.3846 | 0.0444 | 0.0253 | 0.0444 | 0.0200 |
14.7815 | 12.005 | 2343 | 3.7599 | 0.1095 | 0.3402 | 0.5296 | 0.1095 | 0.0711 | 0.1095 | 0.0726 |
13.6312 | 13.0050 | 2523 | 3.5324 | 0.1509 | 0.4320 | 0.5947 | 0.1509 | 0.0861 | 0.1509 | 0.0937 |
11.9507 | 14.0050 | 2703 | 3.2292 | 0.2101 | 0.5444 | 0.7130 | 0.2101 | 0.1555 | 0.2101 | 0.1575 |
10.5467 | 15.0050 | 2884 | 3.0303 | 0.2367 | 0.5562 | 0.7219 | 0.2367 | 0.1863 | 0.2367 | 0.1805 |
8.8902 | 16.005 | 3064 | 2.7703 | 0.3491 | 0.6479 | 0.8077 | 0.3491 | 0.3817 | 0.3491 | 0.3127 |
7.4374 | 17.0050 | 3244 | 2.5973 | 0.3905 | 0.7130 | 0.8136 | 0.3905 | 0.3510 | 0.3905 | 0.3365 |
6.1127 | 18.0050 | 3424 | 2.3462 | 0.4320 | 0.7337 | 0.8580 | 0.4320 | 0.4674 | 0.4320 | 0.4055 |
5.1867 | 19.0050 | 3605 | 2.3088 | 0.4201 | 0.7515 | 0.8639 | 0.4201 | 0.4386 | 0.4201 | 0.4045 |
4.0661 | 20.005 | 3785 | 2.3607 | 0.3876 | 0.7189 | 0.8402 | 0.3905 | 0.4236 | 0.3905 | 0.3654 |
3.1864 | 21.0050 | 3965 | 2.2799 | 0.4201 | 0.7574 | 0.8462 | 0.4201 | 0.4789 | 0.4201 | 0.3998 |
2.5534 | 22.0050 | 4145 | 2.2289 | 0.4260 | 0.7249 | 0.8669 | 0.4260 | 0.4547 | 0.4260 | 0.4115 |
1.8595 | 23.0050 | 4326 | 2.0805 | 0.4467 | 0.7899 | 0.8728 | 0.4467 | 0.4872 | 0.4467 | 0.4271 |
1.6117 | 24.005 | 4506 | 2.0355 | 0.4793 | 0.7781 | 0.8846 | 0.4793 | 0.5106 | 0.4793 | 0.4609 |
1.1388 | 25.0050 | 4686 | 2.0650 | 0.5178 | 0.7663 | 0.8639 | 0.5178 | 0.5759 | 0.5178 | 0.5051 |
0.8489 | 26.0050 | 4866 | 1.9968 | 0.5178 | 0.7811 | 0.8787 | 0.5178 | 0.5630 | 0.5178 | 0.5011 |
0.7129 | 27.0050 | 5047 | 2.1062 | 0.5296 | 0.7663 | 0.8639 | 0.5296 | 0.5699 | 0.5296 | 0.5064 |
0.6167 | 28.005 | 5227 | 2.2424 | 0.4822 | 0.7781 | 0.8669 | 0.4822 | 0.5333 | 0.4822 | 0.4601 |
0.5676 | 29.0050 | 5407 | 2.3891 | 0.4408 | 0.7485 | 0.8580 | 0.4408 | 0.5477 | 0.4408 | 0.4309 |
0.4871 | 30.0050 | 5587 | 2.1354 | 0.4882 | 0.8136 | 0.9172 | 0.4911 | 0.5456 | 0.4911 | 0.4713 |
0.3447 | 31.0050 | 5768 | 2.1996 | 0.5118 | 0.8107 | 0.8787 | 0.5118 | 0.5613 | 0.5118 | 0.4931 |
0.358 | 32.005 | 5948 | 2.2036 | 0.5178 | 0.8136 | 0.8964 | 0.5178 | 0.5841 | 0.5178 | 0.5025 |
0.1964 | 33.0050 | 6128 | 2.2685 | 0.5059 | 0.8047 | 0.9053 | 0.5059 | 0.5579 | 0.5059 | 0.4902 |
0.2698 | 34.0050 | 6308 | 2.3974 | 0.5089 | 0.7959 | 0.8669 | 0.5089 | 0.5442 | 0.5089 | 0.4919 |
0.2084 | 35.0050 | 6489 | 2.5295 | 0.5148 | 0.8136 | 0.8550 | 0.5148 | 0.5617 | 0.5148 | 0.4948 |
0.2268 | 36.005 | 6669 | 2.3980 | 0.5385 | 0.8195 | 0.8728 | 0.5385 | 0.5945 | 0.5385 | 0.5275 |
0.1354 | 37.0050 | 6849 | 2.4901 | 0.5592 | 0.7959 | 0.8669 | 0.5592 | 0.6243 | 0.5592 | 0.5483 |
0.1738 | 38.0050 | 7029 | 2.6473 | 0.5178 | 0.7722 | 0.8757 | 0.5178 | 0.5754 | 0.5178 | 0.5004 |
0.1795 | 39.0050 | 7210 | 2.5686 | 0.5414 | 0.7929 | 0.8876 | 0.5414 | 0.6179 | 0.5414 | 0.5320 |
0.1308 | 40.005 | 7390 | 2.5885 | 0.5089 | 0.8018 | 0.8787 | 0.5089 | 0.5755 | 0.5089 | 0.5035 |
0.1935 | 41.0050 | 7570 | 2.8128 | 0.4970 | 0.7988 | 0.8787 | 0.4970 | 0.5563 | 0.4970 | 0.4846 |
0.1201 | 42.0050 | 7750 | 2.6633 | 0.5355 | 0.8018 | 0.8757 | 0.5355 | 0.5693 | 0.5355 | 0.5190 |
0.1912 | 43.0050 | 7931 | 2.8220 | 0.5059 | 0.7811 | 0.8580 | 0.5059 | 0.5849 | 0.5059 | 0.4903 |
0.18 | 44.005 | 8111 | 3.0467 | 0.4734 | 0.7456 | 0.8462 | 0.4734 | 0.5019 | 0.4734 | 0.4495 |
0.2313 | 45.0050 | 8291 | 2.6114 | 0.5503 | 0.8077 | 0.8669 | 0.5503 | 0.5798 | 0.5503 | 0.5284 |
0.0689 | 46.0050 | 8471 | 2.8944 | 0.5148 | 0.7811 | 0.8580 | 0.5148 | 0.5561 | 0.5148 | 0.4981 |
0.0908 | 47.0050 | 8652 | 2.8956 | 0.5355 | 0.7692 | 0.8669 | 0.5355 | 0.5728 | 0.5355 | 0.5168 |
0.0942 | 48.005 | 8832 | 2.8800 | 0.5148 | 0.7781 | 0.8402 | 0.5148 | 0.5448 | 0.5148 | 0.4965 |
0.2255 | 49.0050 | 9012 | 3.1947 | 0.4941 | 0.7633 | 0.8343 | 0.4941 | 0.5324 | 0.4941 | 0.4762 |
0.1361 | 50.0050 | 9192 | 2.8410 | 0.5385 | 0.7663 | 0.8609 | 0.5385 | 0.5815 | 0.5385 | 0.5195 |
0.1301 | 51.0050 | 9373 | 3.1655 | 0.5089 | 0.7604 | 0.8491 | 0.5118 | 0.5529 | 0.5118 | 0.4932 |
0.1755 | 52.005 | 9553 | 3.6231 | 0.4349 | 0.7219 | 0.8166 | 0.4349 | 0.4579 | 0.4349 | 0.4119 |
0.1833 | 53.0050 | 9733 | 3.1796 | 0.5059 | 0.7781 | 0.8521 | 0.5059 | 0.5421 | 0.5059 | 0.4865 |
0.2115 | 54.0050 | 9913 | 3.2417 | 0.4970 | 0.7574 | 0.8343 | 0.4970 | 0.5495 | 0.4970 | 0.4810 |
0.2306 | 55.0050 | 10094 | 3.1876 | 0.4911 | 0.7367 | 0.8343 | 0.4911 | 0.5179 | 0.4911 | 0.4726 |
0.119 | 56.005 | 10274 | 3.2365 | 0.4941 | 0.7367 | 0.8284 | 0.4941 | 0.5319 | 0.4941 | 0.4723 |
0.1542 | 57.0050 | 10454 | 3.6313 | 0.4408 | 0.7456 | 0.8254 | 0.4408 | 0.5153 | 0.4408 | 0.4320 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Shawon16/VideoMAE_WLASL_100_200_epochs_p20_SR_8_again
Base model
MCG-NJU/videomae-base