Image-to-Image
Diffusers
Safetensors
English
model_hub_mixin
pytorch_model_hub_mixin
Instruct-CLIP / README.md
SherryXTChen's picture
Update README.md
27fead3 verified
---
base_model:
- SherryXTChen/LatentDiffusionDINOv2
datasets:
- timbrooks/instructpix2pix-clip-filtered
- SherryXTChen/InstructCLIP-InstructPix2Pix-Data
language:
- en
license: apache-2.0
pipeline_tag: image-to-image
library_name: diffusers
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
# InstructCLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning (CVPR 2025)
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration.
The model is based on the paper [Instruct-CLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning](https://huggingface.co/papers/2503.18406).
[Arxiv](http://arxiv.org/abs/2503.18406) | [Image Editing Model](https://huggingface.co/SherryXTChen/InstructCLIP-InstructPix2Pix) | [Data Refinement Model](https://huggingface.co/SherryXTChen/Instruct-CLIP) | [Data](https://huggingface.co/datasets/SherryXTChen/InstructCLIP-InstructPix2Pix-Data)
## Capabilities
<p align="center">
<img src="https://raw.githubusercontent.com/SherryXTChen/Instruct-CLIP/refs/heads/main/assets/teaser_2.png" alt="Figure 2" width="50%">
</p>
## Installation
```
pip install -r requirements.txt
```
## Edit Instruction Refinement Inference
```python
from PIL import Image
import torch
from torchvision import transforms
from model import InstructCLIP
from utils import get_sd_components, normalize
parser = argparse.ArgumentParser(description="Simple example of estimating edit instruction from image pair")
parser.add_argument(
"--pretrained_instructclip_name_or_path",
type=str,
default="SherryXTChen/Instruct-CLIP",
help=(
"instructclip pretrained checkpoints"
),
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="runwayml/stable-diffusion-v1-5",
help=(
"sd pretrained checkpoints"
),
)
parser.add_argument(
"--input_path",
type=str,
default="assets/1_input.jpg",
help=(
"Input image path"
)
)
parser.add_argument(
"--output_path",
type=str,
default="assets/1_output.jpg",
help=(
"Output image path"
)
)
args = parser.parse_args()
device = "cuda"
# load model for edit instruction estimation
model = InstructCLIP.from_pretrained("SherryXTChen/Instruct-CLIP")
model = model.to(device).eval()
# load model to preprocess/encode image to latent space
tokenizer, _, vae, _, _ = get_sd_components(args, device, torch.float32)
# prepare image input
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5]),
])
image_list = [args.input_path, args.output_path]
image_list = [
transform(Image.open(f).resize((512, 512))).unsqueeze(0).to(device)
for f in image_list
]
with torch.no_grad():
image_list = [vae.encode(x).latent_dist.sample() * vae.config.scaling_factor for x in image_list]
# get image feature
zero_timesteps = torch.zeros_like(torch.tensor([0])).to(device)
img_feat = model.get_image_features(
inp=image_list[0], out=image_list[1], inp_t=zero_timesteps, out_t=zero_timesteps)
img_feat = normalize(img_feat)
# get edit instruction
pred_instruct_input_ids = model.text_decoder.infer(img_feat[:1])[0]
pred_instruct = tokenizer.decode(pred_instruct_input_ids, skip_special_tokens=True)
print(pred_instruct) # as a 3 d sculpture
```
## Citation
```bibtex
@misc{chen2025instructclipimprovinginstructionguidedimage,
title={Instruct-CLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning},
author={Sherry X. Chen and Misha Sra and Pradeep Sen},
year={2025},
eprint={2503.18406},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.18406},
}
```