|
--- |
|
base_model: |
|
- FacebookAI/xlm-roberta-large |
|
datasets: |
|
- google/xtreme |
|
language: |
|
- en |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- f1 |
|
- accuracy |
|
- precision |
|
- recall |
|
pipeline_tag: token-classification |
|
model-index: |
|
- name: xlm-roberta-large-panx-en |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: google/xtreme |
|
type: google/xtreme |
|
config: PAN-X.en |
|
split: validation |
|
metrics: |
|
- type: precision |
|
value: 0.834659287443791 |
|
name: Precision |
|
- type: recall |
|
value: 0.852891276685989 |
|
name: Recall |
|
- type: f1 |
|
value: 0.8436767945176742 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.9357306049468561 |
|
name: Accuracy |
|
--- |
|
|
|
# XLM-RoBERTa-Large-PANX-WikiAnn-en |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [google/xtreme](https://huggingface.co/datasets/google/xtreme) dataset (English split of the PAN-X). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2569 |
|
- Precision: 0.8347 |
|
- Recall: 0.8529 |
|
- F1: 0.8437 |
|
- Accuracy: 0.9357 |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |