|
--- |
|
base_model: google/flan-t5-xl |
|
library_name: peft |
|
license: apache-2.0 |
|
metrics: |
|
- rouge |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: flan-t5-xl-summarization-epoch20 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-xl-summarization-epoch20 |
|
|
|
This model is a fine-tuned version of [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5008 |
|
- Rouge1: 48.3084 |
|
- Rouge2: 27.2658 |
|
- Rougel: 37.9769 |
|
- Rougelsum: 41.5848 |
|
- Gen Len: 52.1176 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 40 | 0.9558 | 33.7961 | 16.1287 | 27.1659 | 28.0049 | 27.5294 | |
|
| No log | 2.0 | 80 | 0.7329 | 41.1727 | 26.7202 | 35.6927 | 37.9856 | 62.6471 | |
|
| No log | 3.0 | 120 | 0.5996 | 39.7001 | 21.6984 | 29.3765 | 34.738 | 82.0588 | |
|
| No log | 4.0 | 160 | 0.5612 | 41.4021 | 23.9875 | 32.7841 | 36.4756 | 67.5294 | |
|
| No log | 5.0 | 200 | 0.5494 | 42.9379 | 24.0227 | 33.2609 | 37.7189 | 67.5882 | |
|
| No log | 6.0 | 240 | 0.5344 | 44.3145 | 24.7379 | 34.5022 | 38.7382 | 58.1176 | |
|
| No log | 7.0 | 280 | 0.5264 | 48.3821 | 28.1406 | 36.8146 | 40.9602 | 54.1765 | |
|
| No log | 8.0 | 320 | 0.5193 | 48.5669 | 28.7554 | 37.2762 | 41.4076 | 55.8235 | |
|
| No log | 9.0 | 360 | 0.5129 | 48.4222 | 25.9534 | 35.4387 | 40.3668 | 57.7059 | |
|
| No log | 10.0 | 400 | 0.5109 | 48.1639 | 27.399 | 37.7239 | 40.9771 | 51.0588 | |
|
| No log | 11.0 | 440 | 0.5093 | 50.4094 | 29.8618 | 39.3303 | 42.7215 | 53.0 | |
|
| No log | 12.0 | 480 | 0.5060 | 50.3864 | 27.8568 | 37.5365 | 42.3323 | 53.3529 | |
|
| 0.8091 | 13.0 | 520 | 0.5073 | 48.0328 | 26.5537 | 36.7542 | 41.2961 | 55.1765 | |
|
| 0.8091 | 14.0 | 560 | 0.5049 | 47.2298 | 26.6774 | 36.8165 | 40.5404 | 52.5294 | |
|
| 0.8091 | 15.0 | 600 | 0.5008 | 48.3084 | 27.2658 | 37.9769 | 41.5848 | 52.1176 | |
|
| 0.8091 | 16.0 | 640 | 0.5017 | 47.6969 | 27.0742 | 37.3415 | 41.0155 | 54.9412 | |
|
| 0.8091 | 17.0 | 680 | 0.5022 | 48.3553 | 27.5197 | 38.2598 | 41.5044 | 54.0588 | |
|
| 0.8091 | 18.0 | 720 | 0.5018 | 48.474 | 27.5343 | 37.7907 | 41.5528 | 56.0 | |
|
| 0.8091 | 19.0 | 760 | 0.5010 | 48.474 | 27.5343 | 37.7907 | 41.5528 | 56.0 | |
|
| 0.8091 | 20.0 | 800 | 0.5009 | 48.474 | 27.5343 | 37.7907 | 41.5528 | 56.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |