Shreyask09's picture
End of training
2f86729 verified
metadata
library_name: transformers
language:
  - hi
license: mit
base_model: pyannote/speaker-diarization-3.1
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
datasets:
  - Samyak29/synthetic-speaker-diarization-dataset-hindi-large
model-index:
  - name: speaker-segmentation-fine-tuned-hindi
    results: []

speaker-segmentation-fine-tuned-hindi

This model is a fine-tuned version of pyannote/speaker-diarization-3.1 on the Samyak29/synthetic-speaker-diarization-dataset-hindi-large dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4284
  • Model Preparation Time: 0.0095
  • Der: 0.1417
  • False Alarm: 0.0235
  • Missed Detection: 0.0281
  • Confusion: 0.0901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.4708 1.0 194 0.4808 0.0095 0.1613 0.0255 0.0323 0.1035
0.388 2.0 388 0.4553 0.0095 0.1499 0.0225 0.0314 0.0960
0.3654 3.0 582 0.4368 0.0095 0.1433 0.0242 0.0278 0.0913
0.363 4.0 776 0.4296 0.0095 0.1410 0.0239 0.0279 0.0893
0.3388 5.0 970 0.4284 0.0095 0.1417 0.0235 0.0281 0.0901

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1