NeuraVerse / model /transformer.py
SilentProgrammer's picture
Upload 18 files
02d2bd7 verified
import torch
import torch.nn as nn
class SimpleGPT(nn.Module):
def __init__(self, vocab_size, block_size=8, n_embd=128, n_layer=4, n_head=4):
super().__init__()
self.token_emb = nn.Embedding(vocab_size, n_embd)
self.pos_emb = nn.Embedding(block_size, n_embd)
self.blocks = nn.ModuleList([
nn.TransformerEncoderLayer(d_model=n_embd, nhead=n_head, dropout=0.1)
for _ in range(n_layer)
])
self.ln_f = nn.LayerNorm(n_embd)
self.head = nn.Linear(n_embd, vocab_size)
self.block_size = block_size
def forward(self, idx):
b, t = idx.size()
assert t <= self.block_size, "Sequence too long"
pos = torch.arange(0, t, dtype=torch.long, device=idx.device)
tok_emb = self.token_emb(idx)
pos_emb = self.pos_emb(pos)[None, :, :]
x = tok_emb + pos_emb
for block in self.blocks:
x = block(x)
x = self.ln_f(x)
logits = self.head(x)
return logits