trainer10c
This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.8551
- Precision: 0.6429
- Recall: 0.5833
- F1: 0.5823
- Accuracy: 0.5833
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0001 | 0.57 | 30 | 2.6795 | 0.5960 | 0.5357 | 0.5408 | 0.5357 |
0.0608 | 1.13 | 60 | 2.5244 | 0.6958 | 0.6667 | 0.6658 | 0.6667 |
0.0022 | 1.7 | 90 | 3.1879 | 0.6149 | 0.5476 | 0.5234 | 0.5476 |
0.0001 | 2.26 | 120 | 3.5031 | 0.6994 | 0.6071 | 0.6155 | 0.6071 |
0.0018 | 2.83 | 150 | 3.4385 | 0.6736 | 0.5595 | 0.5684 | 0.5595 |
0.0013 | 3.4 | 180 | 3.9040 | 0.6345 | 0.5476 | 0.5422 | 0.5476 |
0.0 | 3.96 | 210 | 3.8575 | 0.6429 | 0.5833 | 0.5823 | 0.5833 |
0.0 | 4.53 | 240 | 3.8583 | 0.6429 | 0.5833 | 0.5823 | 0.5833 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for SimoneJLaudani/trainer10c
Base model
distilbert/distilbert-base-cased