trainer10c

This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.8551
  • Precision: 0.6429
  • Recall: 0.5833
  • F1: 0.5823
  • Accuracy: 0.5833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0001 0.57 30 2.6795 0.5960 0.5357 0.5408 0.5357
0.0608 1.13 60 2.5244 0.6958 0.6667 0.6658 0.6667
0.0022 1.7 90 3.1879 0.6149 0.5476 0.5234 0.5476
0.0001 2.26 120 3.5031 0.6994 0.6071 0.6155 0.6071
0.0018 2.83 150 3.4385 0.6736 0.5595 0.5684 0.5595
0.0013 3.4 180 3.9040 0.6345 0.5476 0.5422 0.5476
0.0 3.96 210 3.8575 0.6429 0.5833 0.5823 0.5833
0.0 4.53 240 3.8583 0.6429 0.5833 0.5823 0.5833

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
20
Safetensors
Model size
65.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SimoneJLaudani/trainer10c

Finetuned
(224)
this model