|
--- |
|
license: mit |
|
--- |
|
|
|
# Hockey Rink Keypoint Detection |
|
|
|
<div style="background-color:#f8f9fa; color:black; border-left: 6px solid #28a745; padding: 10px; margin: 10px 0;"> |
|
|
|
π This model is trained on the <span style="color:red">HockeyRink</span> dataset. |
|
|
|
- π Access the dataset used for training here: <a href="[DATASET_LINK]" style="color:blue;">https://huggingface.co/datasets/SimulaMet-HOST/HockeyRink</a> |
|
- π Try the model in action with our interactive <span style="color:red">Hugging Face Space</span>: <a href="https://huggingface.co/spaces/SimulaMet-HOST/HockeyRink" style="color:blue;">https://huggingface.co/spaces/SimulaMet-HOST/HockeyRink</a> |
|
|
|
</div> |
|
|
|
|
|
|
|
This repository contains a YOLOv8-based model for detecting and mapping keypoints on ice hockey rinks. The model is trained on the HockeyRink dataset, which comprises precise annotations of hockey rink landmarks. |
|
|
|
## Features |
|
|
|
- Accurate detection of 56 keypoint landmarks on hockey rinks |
|
- Real-time keypoint visualization with confidence scores |
|
- Support for various camera angles and lighting conditions |
|
- Handles player occlusions and dynamic game situations |
|
- Trained on diverse SHL (Swedish Hockey League) game footage |
|
|
|
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/647ceb7936e109abce3e9f1f/vnCRrsk8DP8fI_GcFO0Jt.webp) |
|
|
|
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/647ceb7936e109abce3e9f1f/sMbFk-DMBcoQ769FKmaf8.webp) |
|
|
|
## Model Details |
|
|
|
- Architecture: YOLOv8-Large pose estimation |
|
- Input: RGB images (any resolution) |
|
- Output: 56 keypoint coordinates with confidence scores |
|
- Average Performance: |
|
- [email protected]: 97.48% |
|
- [email protected]:0.95: 76.45% |
|
- Precision: 96.21% |
|
- Recall: 96.24% |
|
|
|
## Applications |
|
|
|
- Camera calibration and homography estimation |
|
- 2D/3D scene mapping |
|
- Player tracking and analysis |
|
- Broadcast overlay generation |
|
- Game analytics and statistics |
|
- AR/VR applications |
|
|
|
|
|
|
|
|
|
|
|
## Model Performance |
|
|
|
- Performance tested across different hardware setups |
|
- 13.64 FPS on Tesla T4 GPU |
|
- 6.4 FPS on M3 MacBook Pro |
|
- Handles varying lighting conditions and occlusions |
|
|
|
|
|
<div style="background-color:#e7f3ff; color:black; border-left: 6px solid #0056b3; padding: 12px; margin: 10px 0;"> |
|
|
|
<span style="color:black; font-weight:bold;">π© For any questions regarding this project, or to discuss potential collaboration and joint research opportunities, please contact:</span> |
|
|
|
<ul style="color:black;"> |
|
<li><span style="font-weight:bold; color:black;">Mehdi Houshmand</span>: <a href="mailto:[email protected]" style="color:blue; text-decoration:none;">[email protected]</a></li> |
|
<li><span style="font-weight:bold; color:black;">Cise Midoglu</span>: <a href="mailto:[email protected]" style="color:blue; text-decoration:none;">[email protected]</a></li> |
|
<li><span style="font-weight:bold; color:black;">PΓ₯l Halvorsen</span>: <a href="mailto:[email protected]" style="color:blue; text-decoration:none;">[email protected]</a></li> |
|
</ul> |
|
|
|
</div> |
|
|
|
|