HockeyRink / README.md
MehdiH7's picture
Update README.md
c9ddaab verified
---
license: mit
---
# Hockey Rink Keypoint Detection
<div style="background-color:#f8f9fa; color:black; border-left: 6px solid #28a745; padding: 10px; margin: 10px 0;">
πŸ”— This model is trained on the <span style="color:red">HockeyRink</span> dataset.
- πŸ“Š Access the dataset used for training here: <a href="[DATASET_LINK]" style="color:blue;">https://huggingface.co/datasets/SimulaMet-HOST/HockeyRink</a>
- πŸš€ Try the model in action with our interactive <span style="color:red">Hugging Face Space</span>: <a href="https://huggingface.co/spaces/SimulaMet-HOST/HockeyRink" style="color:blue;">https://huggingface.co/spaces/SimulaMet-HOST/HockeyRink</a>
</div>
This repository contains a YOLOv8-based model for detecting and mapping keypoints on ice hockey rinks. The model is trained on the HockeyRink dataset, which comprises precise annotations of hockey rink landmarks.
## Features
- Accurate detection of 56 keypoint landmarks on hockey rinks
- Real-time keypoint visualization with confidence scores
- Support for various camera angles and lighting conditions
- Handles player occlusions and dynamic game situations
- Trained on diverse SHL (Swedish Hockey League) game footage
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/647ceb7936e109abce3e9f1f/vnCRrsk8DP8fI_GcFO0Jt.webp)
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/647ceb7936e109abce3e9f1f/sMbFk-DMBcoQ769FKmaf8.webp)
## Model Details
- Architecture: YOLOv8-Large pose estimation
- Input: RGB images (any resolution)
- Output: 56 keypoint coordinates with confidence scores
- Average Performance:
- [email protected]: 97.48%
- [email protected]:0.95: 76.45%
- Precision: 96.21%
- Recall: 96.24%
## Applications
- Camera calibration and homography estimation
- 2D/3D scene mapping
- Player tracking and analysis
- Broadcast overlay generation
- Game analytics and statistics
- AR/VR applications
## Model Performance
- Performance tested across different hardware setups
- 13.64 FPS on Tesla T4 GPU
- 6.4 FPS on M3 MacBook Pro
- Handles varying lighting conditions and occlusions
<div style="background-color:#e7f3ff; color:black; border-left: 6px solid #0056b3; padding: 12px; margin: 10px 0;">
<span style="color:black; font-weight:bold;">πŸ“© For any questions regarding this project, or to discuss potential collaboration and joint research opportunities, please contact:</span>
<ul style="color:black;">
<li><span style="font-weight:bold; color:black;">Mehdi Houshmand</span>: <a href="mailto:[email protected]" style="color:blue; text-decoration:none;">[email protected]</a></li>
<li><span style="font-weight:bold; color:black;">Cise Midoglu</span>: <a href="mailto:[email protected]" style="color:blue; text-decoration:none;">[email protected]</a></li>
<li><span style="font-weight:bold; color:black;">PΓ₯l Halvorsen</span>: <a href="mailto:[email protected]" style="color:blue; text-decoration:none;">[email protected]</a></li>
</ul>
</div>