File size: 13,807 Bytes
a479bac edcaa5d a479bac edcaa5d 446e362 a479bac 446e362 edcaa5d 7cc3b2c edcaa5d a479bac edcaa5d a479bac 446e362 9465621 14b7fc4 9465621 446e362 14b7fc4 446e362 14b7fc4 446e362 9e76dcc 14b7fc4 9465621 446e362 14b7fc4 446e362 14b7fc4 446e362 a479bac 9465621 14b7fc4 446e362 14b7fc4 446e362 14b7fc4 446e362 9e76dcc 14b7fc4 446e362 9465621 14b7fc4 9465621 14b7fc4 9465621 446e362 9e76dcc 14b7fc4 9e76dcc 9465621 446e362 14b7fc4 9e76dcc 446e362 9e76dcc 14b7fc4 9e76dcc 14b7fc4 446e362 14b7fc4 9465621 9e76dcc 446e362 14b7fc4 9e76dcc 446e362 14b7fc4 9465621 9e76dcc 9465621 14b7fc4 9465621 14b7fc4 9465621 14b7fc4 446e362 9e76dcc 14b7fc4 9e76dcc 14b7fc4 446e362 14b7fc4 446e362 14b7fc4 446e362 a479bac 446e362 7cc3b2c 446e362 a479bac 7520b9d a479bac 14b7fc4 7cc3b2c a479bac 14b7fc4 446e362 edcaa5d 9e76dcc 446e362 a479bac 446e362 14b7fc4 a479bac 9e76dcc 4487bd6 14b7fc4 446e362 9e76dcc edcaa5d 9e76dcc 7520b9d a479bac edcaa5d 9e76dcc 446e362 a479bac 9465621 edcaa5d 9e76dcc 14b7fc4 a479bac fd4647c 446e362 9465621 14b7fc4 7cc3b2c 446e362 9e76dcc a479bac 9e76dcc 14b7fc4 7cc3b2c a479bac edcaa5d a479bac 7cc3b2c a479bac edcaa5d a479bac 7cc3b2c a479bac 9e76dcc a479bac 7cc3b2c a479bac 7cc3b2c a479bac 9e76dcc a479bac fd4647c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import os
import warnings
import logging
from itertools import chain
import torch
from torch import nn, Tensor
from typing import Optional, Dict
import numpy as np
from datetime import datetime
from dataclasses import dataclass
from torch.nn.functional import scaled_dot_product_attention
from echoutils import *
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.ERROR)
@dataclass
class Dimensions:
vocab: int
mels: int
ctx: int
dims: int
head: int
layer: int
act: str
class rotary(nn.Module):
def __init__(self, dims, head):
super(rotary, self).__init__()
self.dims = dims
self.head = head
self.head_dim = dims // head
self.theta = nn.Parameter((torch.tensor(36000, device=device, dtype=dtype)), requires_grad=True)
self.register_buffer('freqs_base', self._compute_freqs_base(), persistent=False)
def _compute_freqs_base(self):
mel_scale = torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 4000/200)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1
return 200 * mel_scale / 1000
def forward(self, x, ctx) -> Tensor:
freqs = (self.theta / 220.0) * self.freqs_base
pos = torch.arange(ctx, device=device, dtype=dtype)
freqs = pos[:, None] * freqs
freqs=torch.polar(torch.ones_like(freqs), freqs)
x1 = x[..., :freqs.shape[-1]*2]
x2 = x[..., freqs.shape[-1]*2:]
orig_shape = x1.shape
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
x1 = torch.view_as_complex(x1) * freqs
x1 = torch.view_as_real(x1).flatten(-2)
x1 = x1.view(orig_shape)
return torch.cat([x1.type_as(x), x2], dim=-1)
def shape(dims, head, q, k, v):
head_dim = dims // head
scale = head_dim ** -0.25
q = q * scale
k = k * scale
v = v
def _shape(tensor):
return tensor.view(*tensor.shape[:2], head, -1).permute(0, 2, 1, 3).contiguous()
return _shape(q), _shape(k), _shape(v)
def qkv_init(dims: int, head: int):
head_dim = dims // head
q = nn.Linear(dims, dims)
k = nn.Linear(dims, dims, bias=False)
v = nn.Linear(dims, dims)
o = nn.Linear(dims, dims)
lna = nn.LayerNorm(dims, bias=False)
lnb = nn.LayerNorm(dims, bias=False)
lnc = nn.LayerNorm(head_dim, bias=False)
lnd = nn.LayerNorm(head_dim, bias=False)
return q, k, v, o, lna, lnb, lnc, lnd
def calculate_attention(q, k, v, mask=None, temp=1.0):
scaled_q = q
if temp != 1.0 and temp > 0:
scaled_q = q * (1.0 / temp)**.5
out = scaled_dot_product_attention(scaled_q, k, v, is_causal=mask is not None and q.shape[1] > 1)
return out
class LocalOut(nn.Module):
def __init__(self, dims: int, head: int):
super().__init__()
head_dim = dims // head
self.query_module = nn.Linear(head_dim, head_dim)
self.key_module = nn.Linear(head_dim, head_dim)
self.value_module = nn.Linear(head_dim, head_dim)
self.out_proj = nn.Linear(head_dim, head_dim)
def _reshape_to_output(self, attn_output: Tensor) -> Tensor:
batch, _, ctx, _ = attn_output.shape
return attn_output.transpose(1, 2).contiguous().view(batch, ctx, self.dims)
class attentionb(nn.Module):
def __init__(self, dims: int, head: int, max_iter: int = 3, threshold: float = 0.01, factor: float = 0.1, dropout: float = 0.1, temp = 1.0):
super(attentionb, self).__init__()
self.q, self.k, self.v, self.o, self.lna, self.lnb, self.lnc, self.lnd = qkv_init(dims, head)
self.dims = dims
self.head = head
self.max_iter = max_iter
self.threshold = nn.Parameter(torch.tensor(threshold))
self.temp = nn.Parameter(torch.tensor(temp), requires_grad=True)
self.factor = nn.Parameter(torch.tensor(factor))
self.alocal = LocalOut(dims, head)
def _focus(self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None):
q = self.q(self.lna(x))
k = self.k(self.lnb(x if xa is None else xa))
v = self.v(self.lnb(x if xa is None else xa))
q, k, v = shape(self.dims, self.head, q, k, v)
iteration = 0
temp = self.temp.item()
prev_out = torch.zeros_like(q)
attn_out = torch.zeros_like(q)
threshold = self.threshold.item()
factor = self.factor.item()
qcur = q
while iteration < self.max_iter:
eff_span = min(qcur.shape[1], k.shape[1])
if xa is not None:
eff_span = min(eff_span, xa.shape[1])
if eff_span == 0:
break
qiter = qcur[:, :, :eff_span, :]
kiter = k[:, :, :eff_span, :]
viter = v[:, :, :eff_span, :]
q = self.alocal.query_module(qiter)
k = self.alocal.key_module(kiter)
v = self.alocal.value_module(viter)
iter_mask = None
if mask is not None:
if mask.dim() == 4:
iter_mask = mask[:, :, :eff_span, :eff_span]
elif mask.dim() == 2:
iter_mask = mask[:eff_span, :eff_span]
attn_iter = calculate_attention(
self.lnc(q), self.lnd(k), v,
mask=iter_mask, temp=temp)
iter_out = torch.zeros_like(qcur)
iter_out[:, :, :eff_span, :] = attn_iter
diff = torch.abs(iter_out - prev_out).mean()
dthresh = threshold + factor * diff
if diff < dthresh and iteration > 0:
attn_out = iter_out
break
prev_out = iter_out.clone()
qcur = qcur + iter_out
attn_out = iter_out
iteration += 1
temp += 0.005
output = attn_out.permute(0, 2, 1, 3).flatten(start_dim=2)
return self.o(output), None
def _slide_win_local(self, x: Tensor, win_size: int, span_len: int, mask: Optional[Tensor] = None) -> Tensor:
batch, ctx, dims = x.shape
output = torch.zeros_like(x)
num_win = (ctx + win_size - 1) // win_size
for i in range(num_win):
qstart = i * win_size
qend = min(qstart + win_size, ctx)
win_qlen = qend - qstart
if win_qlen == 0:
continue
kstart = max(0, qend - span_len)
kend = qend
qwin = x[:, qstart:qend, :]
kwin = x[:, kstart:kend, :]
win_mask = None
if mask is not None:
if mask.dim() == 4:
win_mask = mask[:, :, qstart:qend, kstart:kend]
elif mask.dim() == 2:
win_mask = mask[qstart:qend, kstart:kend]
attn_out, _ = self._focus(x=qwin, xa=kwin, mask=win_mask)
output[:, qstart:qend, :] = attn_out
return output
def forward(self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None,
use_sliding_win: bool = False, win_size: int = 512, span_len: int = 1024) -> Tensor:
if use_sliding_win:
return self._slide_win_local(x, win_size, span_len, mask)
else:
output, _ = self._focus(x, xa, mask)
return output
class attentiona(nn.Module):
def __init__(self, dims: int, head: int):
super(attentiona, self).__init__()
self.q, self.k, self.v, self.o, self.lna, self.lnb, self.lnc, self.lnd = qkv_init(dims, head)
self.dims = dims
self.head = head
self.rope = rotary(dims=dims, head=head)
def forward(self, x: Tensor, xa = None, mask = None):
q = self.q(self.lna(x))
k = self.k(self.lnb(x if xa is None else xa))
v = self.v(self.lnb(x if xa is None else xa))
q, k, v = shape(self.dims, self.head, q, k, v)
q = self.rope(q, q.shape[2])
k = self.rope(k, k.shape[2])
a = scaled_dot_product_attention(self.lnc(q), self.lnd(k), v, is_causal=mask is not None and q.shape[1] > 1)
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
return self.o(out)
class Residual(nn.Module):
def __init__(self, dims: int, head: int, act: str = "silu"):
super().__init__()
self.lna = nn.LayerNorm(dims, bias=False)
self.attna = attentiona(dims, head)
self.attnb = attentionb(dims, head, max_iter=3)
self.mlp = nn.Sequential(Linear(dims, dims*4), get_activation(act), Linear(dims*4, dims))
def forward(self, x, xa = None, mask = None) -> Tensor:
x = x + self.attna(self.lna(x), mask=mask)
if xa is not None:
x = x + self.attna(self.lna(x), xa, mask=None)
x = x + self.attnb(self.lna(x), xa, mask=None, use_sliding_win=True, win_size=256, span_len=512)
x = x + self.mlp(self.lna(x))
return x
class processor(nn.Module):
def __init__(self, vocab: int, mels: int, ctx: int, dims: int, head: int, layer: int, act: str = "gelu"):
super(processor, self).__init__()
self.lna = nn.LayerNorm(dims)
self.lnb = nn.LayerNorm(dims)
self.lnc = nn.LayerNorm(dims)
self.token_emb = nn.Embedding(vocab, dims)
self.positions = nn.Parameter(torch.empty(ctx, dims), requires_grad=True)
self.audio_emb = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
act_fn = get_activation(act)
self.audio_enc = nn.Sequential(
Conv1d(1, dims, kernel_size=3, stride=1, padding=1), act_fn,
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
self.bA = nn.ModuleList([Residual(dims, head, act_fn) for _ in range(layer)])
mask = torch.empty(ctx, ctx).fill_(-np.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x, xa, sequential=False, modal=False) -> Tensor:
x = self.token_emb(x.long()) + self.positions[:x.shape[1]]
xa = self.audio_enc(xa).permute(0, 2, 1)
xa = xa + self.audio_emb(xa.shape[1], xa.shape[-1], 36000.0).to(device, dtype)
for b in chain(self.bA or []):
xa = b(x=xa, xa=None, mask=None)
x = b(x=x, xa=None, mask=self.mask)
x = b(x=x, xa=xa, mask=None)
xc = b(torch.cat([x, xa], dim=1), xa=None, mask=self.mask) if modal else None
x = b(x=xc[:, :x.shape[1]], xa=xc[:, x.shape[1]:], mask=None) if modal else x
x = nn.functional.dropout(x, p=0.001, training=self.training)
x = self.lnc(x)
x = x @ torch.transpose(self.token_emb.weight.to(dtype), 0, 1).float()
return x
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")
class Model(nn.Module):
def __init__(self, param: Dimensions):
super().__init__()
self.param = param
self.processor = processor(
vocab=param.vocab,
mels=param.mels,
ctx=param.ctx,
dims=param.dims,
head=param.head,
layer=param.layer,
act=param.act)
def forward(self,
labels=None, input_ids=None, pitch: Optional[torch.Tensor]=None) -> Dict[str, Optional[torch.Tensor]]:
x = input_ids
xa = pitch if pitch is not None else torch.zeros(1, 1, self.param.mels, device=device, dtype=dtype)
logits = self.processor(x, xa)
loss = None
if labels is not None:
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
return {"logits": logits, "loss": loss}
def _init_weights(self, module):
self.init_counts = {
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
"Conv2d": 0, "processor": 0, "attention": 0, "Residual": 0}
for name, module in self.named_modules():
if isinstance(module, RMSNorm):
nn.init.ones_(module.weight)
self.init_counts["RMSNorm"] += 1
elif isinstance(module, nn.Linear):
if module.weight is not None:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Linear"] += 1
elif isinstance(module, Conv1d):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv1d"] += 1
elif isinstance(module, Conv2d):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv2d"] += 1
elif isinstance(module, Residual):
self.init_counts["Residual"] += 1
elif isinstance(module, processor):
self.init_counts["processor"] += 1
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")
|