Skier8402's picture
Update README.md
683b94e verified
|
raw
history blame
2.16 kB
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the [SQUAD dataset]().
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
Step Training Loss
500 2.635500
1000 1.655900
1500 1.460800
2000 1.378100
2500 1.328600
3000 1.287900
3500 1.236900
4000 1.179500
4500 1.130300
5000 1.163700
5500 1.122700
6000 1.140600
6500 1.141300
7000 1.082100
7500 1.096400
8000 1.108300
8500 1.058300
9000 1.082500
9500 1.026400
10000 1.040700
10500 1.035200
11000 1.010700
11500 0.807700
12000 0.710500
12500 0.784300
13000 0.740100
13500 0.771600
14000 0.777200
14500 0.749000
15000 0.734800
15500 0.749500
16000 0.775600
16500 0.724300
17000 0.768300
17500 0.753600
18000 0.732900
18500 0.734200
19000 0.699800
19500 0.732600
20000 0.764600
20500 0.772900
21000 0.734000
21500 0.734000
22000 0.691000
22500 0.588700
23000 0.514800
23500 0.539000
24000 0.515900
24500 0.490800
25000 0.524200
25500 0.516200
26000 0.486200
26500 0.526000
27000 0.495300
27500 0.527600
28000 0.484800
28500 0.486300
29000 0.522200
29500 0.519200
30000 0.508800
30500 0.516700
31000 0.490600
31500 0.516100
32000 0.499500
32500 0.496100
33000 0.465300
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2