Swin_BART_KTVIC

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1684
  • Bleu-4: 0.2074

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu-4
No log 1.0 236 1.4136 0.1220
1.9745 2.0 472 1.2818 0.1443
1.3205 3.0 708 1.2124 0.1686
1.1231 4.0 944 1.1763 0.1860
1.1231 5.0 1180 1.1625 0.1949
0.9658 6.0 1416 1.1590 0.2025
0.8276 7.0 1652 1.1684 0.2074

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
16
Safetensors
Model size
440M params
Tensor type
I64
·
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.