Sleepyp00's picture
End of training
42bf740
metadata
language:
  - sv
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
  - google/fleurs
metrics:
  - wer
model-index:
  - name: whisper-small-sv-extra-data
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0
          type: mozilla-foundation/common_voice_13_0
          config: default
          split: test
          args: 'config: sv, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 22.158468913970783
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
        metrics:
          - name: Wer
            type: wer
            value: 22.158468913970783

whisper-small-sv-extra-data

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_13_0 and the google/fleurs datasets. It achieves the following results on the evaluation set:

  • Loss: 0.3843
  • Wer: 22.1585

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3189 0.53 500 0.3610 25.2029
0.1451 1.05 1000 0.3337 23.6495
0.1432 1.58 1500 0.3263 22.8908
0.0572 2.1 2000 0.3284 22.1622
0.0502 2.63 2500 0.3405 22.2000
0.0259 3.15 3000 0.3596 22.1924
0.0246 3.68 3500 0.3650 22.2208
0.0137 4.2 4000 0.3843 22.1585

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0