🐕Small-Doges
Collection
Doge family of small language models!
•
13 items
•
Updated
•
4
Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by SmallDoge community, for detailed algorithm and model architecture, paper coming soon, all training details and code are available in the small-doge repository.
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-60M-Instruct")
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-60M-Instruct", trust_remote_code=True)
generation_config = GenerationConfig(
max_new_tokens=100,
use_cache=True,
do_sample=True,
temperature=0.8,
top_p=0.9,
repetition_penalty=1.0
)
steamer = TextStreamer(
tokenizer=tokenizer,
skip_prompt=True
)
prompt = "Hi, how are you doing today?"
conversation = [
{"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(
conversation=conversation,
tokenize=True,
return_tensors="pt",
)
outputs = model.generate(
inputs,
tokenizer=tokenizer,
generation_config=generation_config,
streamer=steamer
)
We build the Doge-Instruct by first SFT on SmolTalk and then DPO on UltraFeedback Binarized.
SFT:
Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
---|---|---|---|---|---|---|
Doge-20M-Instruct-SFT | smoltalk | 2 | 2048 | 8e-4 | 0.25M | bfloat16 |
Doge-60M-Instruct-SFT | smoltalk | 2 | 2048 | 6e-4 | 0.25M | bfloat16 |
Doge-160M-Instruct-SFT | smoltalk | 2 | 2048 | 4e-4 | 0.25M | bfloat16 |
Doge-320M-Instruct-SFT | smoltalk | 2 | 2048 | 2e-4 | 0.25M | bfloat16 |
DPO:
Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
---|---|---|---|---|---|---|
Doge-20M-Instruct | ultrafeedback_binarized | 2 | 1024 | 8e-5 | 0.125M | bfloat16 |
Doge-60M-Instruct | ultrafeedback_binarized | 2 | 1024 | 6e-5 | 0.125M | bfloat16 |
Doge-160M-Instruct | ultrafeedback_binarized | 2 | 1024 | 4e-5 | 0.125M | bfloat16 |
Doge-320M-Instruct | ultrafeedback_binarized | 2 | 1024 | 2e-5 | 0.125M | bfloat16 |
Evaluation:
Model | IFEval (Prompt Strict Acc) | MMLU | BBH | ARC | PIQA | HellaSwag | tokens / s on i7-11 CPU |
---|---|---|---|---|---|---|---|
Doge-20M-Instruct | 7.3 | 26.3 | 18.3 | 29.2 | 57.8 | 27.8 | 142 |
Doge-60M-Instruct | 7.4 | 27.5 | 27.7 | 37.5 | 61.4 | 32.1 | 62 |
Doge-160M-Instruct | 16.8 | 29.7 | 29.1 | 42.8 | 64.1 | 37.1 | 28 |
Doge-320M-Instruct | 28.5 | 30.3 | 31.9 | 51.7 | 71.0 | 50.6 | 16 |
Procedure:
Environment:
@misc{smalldoges,
title={SmallDoges: A Family of Dynamic UltraFast Small Language Models},
author={Jingze, Shi and Yifan, Wu and Bingheng, Wu and Yuyu, Luo},
year={2025},
month={March},
url={https://github.com/SmallDoges/small-doge}
}