Softechlb/Sent_analysis_CVs
This model is distilled from the zero-shot classification pipeline on the Multilingual Sentiment dataset using this script.
In reality the multilingual-sentiment dataset is annotated of course, but we'll pretend and ignore the annotations for the sake of example.
Teacher model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
Teacher hypothesis template: "The sentiment of this text is {}."
Student model: distilbert-base-multilingual-cased
Inference example
from transformers import pipeline
distilled_student_sentiment_classifier = pipeline(
model="Softechlb/Sent_analysis_CVs",
return_all_scores=True
)
# english
distilled_student_sentiment_classifier ("I love this movie and i would watch it again and again!")
>> [[{'label': 'positive', 'score': 0.9731044769287109},
{'label': 'neutral', 'score': 0.016910076141357422},
{'label': 'negative', 'score': 0.009985478594899178}]]
# malay
distilled_student_sentiment_classifier("Saya suka filem ini dan saya akan menontonnya lagi dan lagi!")
[[{'label': 'positive', 'score': 0.9760093688964844},
{'label': 'neutral', 'score': 0.01804516464471817},
{'label': 'negative', 'score': 0.005945465061813593}]]
# japanese
distilled_student_sentiment_classifier("็งใฏใใฎๆ ็ปใๅคงๅฅฝใใงใไฝๅบฆใ่ฆใพใ๏ผ")
>> [[{'label': 'positive', 'score': 0.9342429041862488},
{'label': 'neutral', 'score': 0.040193185210227966},
{'label': 'negative', 'score': 0.025563929229974747}]]
### Training log
```bash
Training completed. Do not forget to share your model on huggingface.co/models =)
{'train_runtime': 2009.8864, 'train_samples_per_second': 73.0, 'train_steps_per_second': 4.563, 'train_loss': 0.6473459283913797, 'epoch': 1.0}
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 9171/9171 [33:29<00:00, 4.56it/s]
[INFO|trainer.py:762] 2023-05-06 10:56:18,555 >> The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3129] 2023-05-06 10:56:18,557 >> ***** Running Evaluation *****
[INFO|trainer.py:3131] 2023-05-06 10:56:18,557 >> Num examples = 146721
[INFO|trainer.py:3134] 2023-05-06 10:56:18,557 >> Batch size = 128
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 1147/1147 [08:59<00:00, 2.13it/s]
05/06/2023 11:05:18 - INFO - __main__ - Agreement of student and teacher predictions: 88.29%
[INFO|trainer.py:2868] 2023-05-06 11:05:18,251 >> Saving model checkpoint to ./distilbert-base-multilingual-cased-sentiments-student
[INFO|configuration_utils.py:457] 2023-05-06 11:05:18,251 >> Configuration saved in ./distilbert-base-multilingual-cased-sentiments-student/config.json
[INFO|modeling_utils.py:1847] 2023-05-06 11:05:18,905 >> Model weights saved in ./distilbert-base-multilingual-cased-sentiments-student/pytorch_model.bin
[INFO|tokenization_utils_base.py:2171] 2023-05-06 11:05:18,905 >> tokenizer config file saved in ./distilbert-base-multilingual-cased-sentiments-student/tokenizer_config.json
[INFO|tokenization_utils_base.py:2178] 2023-05-06 11:05:18,905 >> Special tokens file saved in ./distilbert-base-multilingual-cased-sentiments-student/special_tokens_map.json
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.