File size: 3,389 Bytes
0fc8bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7165054
c5c3104
0fc8bd5
 
 
7165054
0fc8bd5
 
7165054
 
 
0fc8bd5
7165054
 
a8796dd
7165054
 
 
 
 
 
 
 
a8796dd
 
 
 
 
 
7165054
 
a8796dd
 
7165054
a8796dd
7165054
 
 
 
 
 
a8796dd
7165054
 
 
 
 
 
0fc8bd5
 
7165054
 
0fc8bd5
7165054
0fc8bd5
 
7165054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fc8bd5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
base_model:
- inceptionai/jais-family-590m
- inceptionai/jais-family-590m
tags:
- merge
- mergekit
- lazymergekit
- inceptionai/jais-family-590m
---

# Jais-590m-merged

Jais-590m-merged is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [inceptionai/jais-family-590m](https://huggingface.co/inceptionai/jais-family-590m)
* [inceptionai/jais-family-590m](https://huggingface.co/inceptionai/jais-family-590m)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: inceptionai/jais-family-590m
        layer_range: [0, 18]
      - model: inceptionai/jais-family-590m
        layer_range: [0, 18]
merge_method: slerp
base_model: inceptionai/jais-family-590m
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

/Due to the jais family tokenizer deployment with trust remote code, especially if handling Arabic, the following implementation is suggested for inferencing this merge model/

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch

# Model and message setup
model_name = "Solshine/Jais-590m-merged"
user_message = "Explain how transformers work in machine learning"  # This can be any user input

# Structure the message with role-content pairing for compatibility with Jais-chat format
messages = [{"role": "user", "content": user_message}]

# Initialize tokenizer with trust_remote_code for custom Arabic-English handling
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

# Check if tokenizer is valid
if tokenizer is None:
    raise ValueError("Tokenizer initialization failed!")

# Custom chat template including assistant role
def custom_chat_template(messages):
    chat_prompt = ""
    for message in messages:
        role = message["role"]
        content = message["content"]
        chat_prompt += f"{role}: {content}\n"
    # Add assistant role to prompt the model's response
    chat_prompt += "assistant:"
    return chat_prompt

# Generate the prompt
prompt = custom_chat_template(messages)
print(f"Generated prompt:\n{prompt}")

# Initialize the model
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
if model is None:
    raise ValueError("Model initialization failed!")

# Move model to the appropriate device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Initialize the text generation pipeline
text_gen_pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device=device,
    torch_dtype=torch.float16,
    trust_remote_code=True
)

# Generate text
try:
    outputs = text_gen_pipeline(
        prompt,
        max_new_tokens=256,
        do_sample=True,
        temperature=0.7,
        top_k=50,
        top_p=0.95,
        pad_token_id=tokenizer.eos_token_id  # Ensure proper stopping
    )
    # Extract and print the assistant's response
    generated_text = outputs[0]["generated_text"]
    assistant_response = generated_text.split("assistant:")[1].strip()
    print(f"Assistant's response:\n{assistant_response}")
except Exception as e:
    print(f"Error during text generation: {e}")

```