Jais-590m-merged / README.md
Solshine's picture
Update README.md
a8796dd verified
|
raw
history blame
1.9 kB
---
base_model:
- inceptionai/jais-family-590m
- inceptionai/jais-family-590m
tags:
- merge
- mergekit
- lazymergekit
- inceptionai/jais-family-590m
---
# Jais-590m-merged
Jais-590m-merged is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [inceptionai/jais-family-590m](https://huggingface.co/inceptionai/jais-family-590m)
* [inceptionai/jais-family-590m](https://huggingface.co/inceptionai/jais-family-590m)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: inceptionai/jais-family-590m
layer_range: [0, 18]
- model: inceptionai/jais-family-590m
layer_range: [0, 18]
merge_method: slerp
base_model: inceptionai/jais-family-590m
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Solshine/Jais-590m-merged"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)
# Manually apply a basic chat template since it's not provided by the model
def custom_chat_template(messages):
chat_prompt = ""
for message in messages:
role = message["role"]
content = message["content"]
chat_prompt += f"{role}: {content}\n"
return chat_prompt
prompt = custom_chat_template(messages)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```