|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ditmodel |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: test |
|
split: train |
|
args: test |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9523326572008114 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ditmodel |
|
|
|
This model was fintuned on DiT model for document classification on custom dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1482 |
|
- Accuracy: 0.9523 |
|
- Weighted f1: 0.9524 |
|
- Micro f1: 0.9523 |
|
- Macro f1: 0.9505 |
|
- Weighted recall: 0.9523 |
|
- Micro recall: 0.9523 |
|
- Macro recall: 0.9523 |
|
- Weighted precision: 0.9544 |
|
- Micro precision: 0.9523 |
|
- Macro precision: 0.9506 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
| 0.2337 | 1.0 | 78 | 0.2668 | 0.9087 | 0.9098 | 0.9087 | 0.9058 | 0.9087 | 0.9087 | 0.9040 | 0.9229 | 0.9087 | 0.9220 | |
|
| 0.1711 | 2.0 | 156 | 0.1820 | 0.9376 | 0.9380 | 0.9376 | 0.9331 | 0.9376 | 0.9376 | 0.9403 | 0.9416 | 0.9376 | 0.9292 | |
|
| 0.1297 | 3.0 | 234 | 0.1482 | 0.9523 | 0.9524 | 0.9523 | 0.9505 | 0.9523 | 0.9523 | 0.9523 | 0.9544 | 0.9523 | 0.9506 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.15.1 |
|
|