Spatiallysaying's picture
End of training
0f3093c verified
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - image-segmentation
  - vision
  - generated_from_trainer
model-index:
  - name: segformer-finetuned-rwymarkings-2-steps
    results: []

segformer-finetuned-rwymarkings-2-steps

This model is a fine-tuned version of nvidia/mit-b0 on the Spatiallysaying/rwymarkings dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2162
  • Mean Iou: 0.0387
  • Mean Accuracy: 0.1129
  • Overall Accuracy: 0.1050
  • Accuracy Backgound : nan
  • Accuracy Tdz: 0.0493
  • Accuracy Aim: 0.2144
  • Accuracy Desig: 0.0922
  • Accuracy Rwythr: 0.1765
  • Accuracy Thrbar: 0.0140
  • Accuracy Disp: 0.2710
  • Accuracy Chevron: 0.0023
  • Accuracy Arrow: 0.0834
  • Iou Backgound : 0.0
  • Iou Tdz: 0.0399
  • Iou Aim: 0.1158
  • Iou Desig: 0.0443
  • Iou Rwythr: 0.0980
  • Iou Thrbar: 0.0131
  • Iou Disp: 0.0266
  • Iou Chevron: 0.0020
  • Iou Arrow: 0.0085

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 2

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Backgound Accuracy Tdz Accuracy Aim Accuracy Desig Accuracy Rwythr Accuracy Thrbar Accuracy Disp Accuracy Chevron Accuracy Arrow Iou Backgound Iou Tdz Iou Aim Iou Desig Iou Rwythr Iou Thrbar Iou Disp Iou Chevron Iou Arrow
2.2475 0.0455 2 2.2162 0.0387 0.1129 0.1050 nan 0.0493 0.2144 0.0922 0.1765 0.0140 0.2710 0.0023 0.0834 0.0 0.0399 0.1158 0.0443 0.0980 0.0131 0.0266 0.0020 0.0085

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1