timit-xls-r-300m / README.md
marczenko's picture
End of training
b44502a verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - timit_asr
metrics:
  - wer
model-index:
  - name: timit-xls-r-300m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: timit_asr
          type: timit_asr
          config: clean
          split: None
          args: clean
        metrics:
          - name: Wer
            type: wer
            value: 0.2466404796361381

timit-xls-r-300m

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the timit_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4457
  • Wer: 0.2466

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.0049 1.72 500 1.9735 1.0655
1.033 3.45 1000 0.6172 0.5115
0.4499 5.17 1500 0.5231 0.4395
0.2551 6.9 2000 0.4768 0.3772
0.1724 8.62 2500 0.4699 0.3626
0.133 10.34 3000 0.4346 0.3329
0.1082 12.07 3500 0.4479 0.3163
0.0886 13.79 4000 0.4393 0.3167
0.0766 15.52 4500 0.4920 0.3100
0.0637 17.24 5000 0.4510 0.3013
0.0607 18.97 5500 0.4284 0.2808
0.0495 20.69 6000 0.4270 0.2820
0.0479 22.41 6500 0.4294 0.2852
0.0444 24.14 7000 0.4456 0.2816
0.0378 25.86 7500 0.4236 0.2763
0.0325 27.59 8000 0.4365 0.2849
0.031 29.31 8500 0.4482 0.2862
0.0285 31.03 9000 0.4388 0.2691
0.0252 32.76 9500 0.4253 0.2692
0.0229 34.48 10000 0.4598 0.2641
0.0223 36.21 10500 0.4462 0.2533
0.0188 37.93 11000 0.4350 0.2673
0.0163 39.66 11500 0.4460 0.2608
0.0167 41.38 12000 0.4441 0.2683
0.0138 43.1 12500 0.4290 0.2528
0.0127 44.83 13000 0.4360 0.2508
0.0124 46.55 13500 0.4406 0.2511
0.0107 48.28 14000 0.4482 0.2477
0.0108 50.0 14500 0.4457 0.2466

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2