TrOCR-SIN(DeiT)

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4335
  • Cer: 0.1445

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 75000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss
1.3019 1.78 5000 0.6416 1.7769
0.6387 3.55 10000 0.4048 0.8457
0.3402 5.33 15000 0.2808 0.6898
0.1332 7.11 20000 0.2377 0.5765
0.1141 8.89 25000 0.2223 0.4460
0.0481 10.66 30000 0.1868 0.4128
0.0391 12.44 35000 0.1563 0.4172
0.0357 14.22 40000 0.1981 0.4756
0.0215 16.0 45000 0.1983 0.5838
0.0129 17.77 50000 0.1757 0.5511
0.0087 19.55 55000 0.1699 0.5568
0.003 21.33 60000 0.1648 0.4532
0.0042 23.11 65000 0.1582 0.4650
0.0066 24.88 70000 0.1654 0.4740
0.0014 26.66 75000 0.1448 0.4337

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
25
Safetensors
Model size
241M params
Tensor type
F32
ยท
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for SriDoc/TrOCR-Sin-Printed

Finetunes
4 models

Space using SriDoc/TrOCR-Sin-Printed 1