whisper-tiny-fr
This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8198
- Wer: 0.8502
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 6250
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.6223 | 1.0 | 250 | 0.7567 | 0.7225 |
0.475 | 2.0 | 500 | 0.6213 | 0.5461 |
0.2938 | 3.0 | 750 | 0.5860 | 0.5383 |
0.1613 | 4.0 | 1000 | 0.5903 | 0.4384 |
0.1026 | 5.0 | 1250 | 0.5992 | 0.4451 |
0.0615 | 6.0 | 1500 | 0.6322 | 0.5383 |
0.0422 | 7.0 | 1750 | 0.6398 | 0.4373 |
0.019 | 8.0 | 2000 | 0.6682 | 0.5239 |
0.0125 | 9.0 | 2250 | 0.6980 | 0.6681 |
0.0069 | 10.0 | 2500 | 0.7335 | 0.8679 |
0.0039 | 11.0 | 2750 | 0.7354 | 0.6238 |
0.0026 | 12.0 | 3000 | 0.7458 | 0.6315 |
0.0021 | 13.0 | 3250 | 0.7599 | 0.6715 |
0.0018 | 14.0 | 3500 | 0.7682 | 0.7103 |
0.0015 | 15.0 | 3750 | 0.7750 | 0.7081 |
0.0013 | 16.0 | 4000 | 0.7846 | 0.7125 |
0.0012 | 17.0 | 4250 | 0.7897 | 0.7114 |
0.001 | 18.0 | 4500 | 0.7962 | 0.9345 |
0.0009 | 19.0 | 4750 | 0.8001 | 0.7170 |
0.0009 | 20.0 | 5000 | 0.8074 | 0.8335 |
0.0008 | 21.0 | 5250 | 0.8107 | 0.8424 |
0.0007 | 22.0 | 5500 | 0.8152 | 0.8402 |
0.0007 | 23.0 | 5750 | 0.8181 | 0.8446 |
0.0007 | 24.0 | 6000 | 0.8187 | 0.8479 |
0.0007 | 25.0 | 6250 | 0.8198 | 0.8502 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 34
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.