metadata
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: prompt-injection-roberta
results: []
prompt-injection-roberta
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0022
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5157 | 1.0 | 59 | 0.3235 | 0.9136 |
0.1514 | 2.0 | 118 | 0.0030 | 1.0 |
0.114 | 3.0 | 177 | 0.0007 | 1.0 |
0.02 | 4.0 | 236 | 0.0102 | 0.9877 |
0.0035 | 5.0 | 295 | 0.0022 | 1.0 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1