File size: 7,618 Bytes
2c0d57d
7ea1f47
2c0d57d
7ea1f47
 
 
2c0d57d
 
ec85962
 
 
7ea1f47
ec85962
7ea1f47
9cf5b2b
7ea1f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c75a086
 
7ea1f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c75a086
7ea1f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
pipeline_tag: feature-extraction
library_name: "transformers.js"
language:
  - en
license: mit
---

_Fork of https://huggingface.co/thenlper/gte-small with ONNX weights to be compatible with Transformers.js. See [JavaScript usage](#javascript)._

---

# gte-small

General Text Embeddings (GTE) model. 

The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co/thenlper/gte-large), [GTE-base](https://huggingface.co/thenlper/gte-base), and [GTE-small](https://huggingface.co/thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.

## Metrics

Performance of GTE models were compared with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).



| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [**gte-large**](https://huggingface.co/thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 |
| [**gte-base**](https://huggingface.co/thenlper/gte-base) 	| 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 |
| [**gte-small**](https://huggingface.co/thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) 	| 0.44 | 768 | 514 	| 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) 	| 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 |
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) 	| 0.13 | 384 | 512 	| 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 |
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) 	| 0.09 | 384 | 512 	| 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 |
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) 	| 0.44 | 768 | 512 	| 56.00 | 41.1 	| 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 |
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) 	| 0.22 | 768 | 512 	| 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 |


## Usage

This model can be used with both [Python](#python) and [JavaScript](#javascript).

### Python
Use with [Transformers](https://huggingface.co/docs/transformers/index) and [PyTorch](https://pytorch.org/docs/stable/index.html):

```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel

def average_pool(last_hidden_states: Tensor,
                 attention_mask: Tensor) -> Tensor:
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]

input_texts = [
    "what is the capital of China?",
    "how to implement quick sort in python?",
    "Beijing",
    "sorting algorithms"
]

tokenizer = AutoTokenizer.from_pretrained("Supabase/gte-small")
model = AutoModel.from_pretrained("Supabase/gte-small")

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')

outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
```

Use with [sentence-transformers](https://www.sbert.net/):
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

sentences = ['That is a happy person', 'That is a very happy person']

model = SentenceTransformer('Supabase/gte-small')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
```

### JavaScript
This model can be used with JavaScript via [Transformers.js](https://huggingface.co/docs/transformers.js/index).

Use with [Deno](https://deno.land/manual/introduction) or [Supabase Edge Functions](https://supabase.com/docs/guides/functions):

```ts
import { serve } from 'https://deno.land/[email protected]/http/server.ts'
import { env, pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]'

// Configuration for Deno runtime
env.useBrowserCache = false;
env.allowLocalModels = false;

const pipe = await pipeline(
  'feature-extraction',
  'Supabase/gte-small',
);

serve(async (req) => {
  // Extract input string from JSON body
  const { input } = await req.json();

  // Generate the embedding from the user input
  const output = await pipe(input, {
    pooling: 'mean',
    normalize: true,
  });

  // Extract the embedding output
  const embedding = Array.from(output.data);

  // Return the embedding
  return new Response(
    JSON.stringify({ embedding }),
    { headers: { 'Content-Type': 'application/json' } }
  );
});
```

Use within the browser ([JavaScript Modules](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules)):

```html
<script type="module">

import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';

const pipe = await pipeline(
  'feature-extraction',
  'Supabase/gte-small',
);

// Generate the embedding from text
const output = await pipe('Hello world', {
  pooling: 'mean',
  normalize: true,
});

// Extract the embedding output
const embedding = Array.from(output.data);

console.log(embedding);

</script>
```

Use within [Node.js](https://nodejs.org/en/docs) or a web bundler ([Webpack](https://webpack.js.org/concepts/), etc):

```js
import { pipeline } from '@xenova/transformers';

const pipe = await pipeline(
  'feature-extraction',
  'Supabase/gte-small',
);

// Generate the embedding from text
const output = await pipe('Hello world', {
  pooling: 'mean',
  normalize: true,
});

// Extract the embedding output
const embedding = Array.from(output.data);

console.log(embedding);
```

### Limitation

This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.