Commit
·
b89c008
1
Parent(s):
fe7cbab
Delete train.py
Browse files
train.py
DELETED
@@ -1,197 +0,0 @@
|
|
1 |
-
import time, os, torch, argparse, warnings, glob, pandas, json
|
2 |
-
|
3 |
-
from utils.tools import *
|
4 |
-
from dlhammer import bootstrap
|
5 |
-
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
6 |
-
import torch.multiprocessing as mp
|
7 |
-
import torch.distributed as dist
|
8 |
-
|
9 |
-
from xxlib.utils.distributed import all_gather, all_reduce
|
10 |
-
from torch import nn
|
11 |
-
from dataLoader_multiperson import train_loader, val_loader
|
12 |
-
|
13 |
-
from loconet import loconet
|
14 |
-
|
15 |
-
|
16 |
-
class MyCollator(object):
|
17 |
-
|
18 |
-
def __init__(self, cfg):
|
19 |
-
self.cfg = cfg
|
20 |
-
|
21 |
-
def __call__(self, data):
|
22 |
-
audiofeatures = [item[0] for item in data]
|
23 |
-
visualfeatures = [item[1] for item in data]
|
24 |
-
labels = [item[2] for item in data]
|
25 |
-
masks = [item[3] for item in data]
|
26 |
-
cut_limit = self.cfg.MODEL.CLIP_LENGTH
|
27 |
-
# pad audio
|
28 |
-
lengths = torch.tensor([t.shape[1] for t in audiofeatures])
|
29 |
-
max_len = max(lengths)
|
30 |
-
padded_audio = torch.stack([
|
31 |
-
torch.cat([i, i.new_zeros((i.shape[0], max_len - i.shape[1], i.shape[2]))], 1)
|
32 |
-
for i in audiofeatures
|
33 |
-
], 0)
|
34 |
-
|
35 |
-
if max_len > cut_limit * 4:
|
36 |
-
padded_audio = padded_audio[:, :, :cut_limit * 4, ...]
|
37 |
-
|
38 |
-
# pad video
|
39 |
-
lengths = torch.tensor([t.shape[1] for t in visualfeatures])
|
40 |
-
max_len = max(lengths)
|
41 |
-
padded_video = torch.stack([
|
42 |
-
torch.cat(
|
43 |
-
[i, i.new_zeros((i.shape[0], max_len - i.shape[1], i.shape[2], i.shape[3]))], 1)
|
44 |
-
for i in visualfeatures
|
45 |
-
], 0)
|
46 |
-
padded_labels = torch.stack(
|
47 |
-
[torch.cat([i, i.new_zeros((i.shape[0], max_len - i.shape[1]))], 1) for i in labels], 0)
|
48 |
-
padded_masks = torch.stack(
|
49 |
-
[torch.cat([i, i.new_zeros((i.shape[0], max_len - i.shape[1]))], 1) for i in masks], 0)
|
50 |
-
|
51 |
-
if max_len > cut_limit:
|
52 |
-
padded_video = padded_video[:, :, :cut_limit, ...]
|
53 |
-
padded_labels = padded_labels[:, :, :cut_limit, ...]
|
54 |
-
padded_masks = padded_masks[:, :, :cut_limit, ...]
|
55 |
-
|
56 |
-
return padded_audio, padded_video, padded_labels, padded_masks
|
57 |
-
|
58 |
-
|
59 |
-
class DataPrep():
|
60 |
-
|
61 |
-
def __init__(self, cfg, world_size, rank):
|
62 |
-
self.cfg = cfg
|
63 |
-
self.world_size = world_size
|
64 |
-
self.rank = rank
|
65 |
-
|
66 |
-
def train_dataloader(self):
|
67 |
-
|
68 |
-
loader = train_loader(self.cfg, trialFileName = self.cfg.trainTrialAVA, \
|
69 |
-
audioPath = os.path.join(self.cfg.audioPathAVA , 'train'), \
|
70 |
-
visualPath = os.path.join(self.cfg.visualPathAVA, 'train'), \
|
71 |
-
num_speakers=self.cfg.MODEL.NUM_SPEAKERS,
|
72 |
-
)
|
73 |
-
train_sampler = torch.utils.data.distributed.DistributedSampler(
|
74 |
-
loader, num_replicas=self.world_size, rank=self.rank)
|
75 |
-
collator = MyCollator(self.cfg)
|
76 |
-
trainLoader = torch.utils.data.DataLoader(loader,
|
77 |
-
batch_size=self.cfg.TRAIN.BATCH_SIZE,
|
78 |
-
pin_memory=False,
|
79 |
-
num_workers=self.cfg.NUM_WORKERS,
|
80 |
-
collate_fn=collator,
|
81 |
-
sampler=train_sampler)
|
82 |
-
return trainLoader
|
83 |
-
|
84 |
-
def val_dataloader(self):
|
85 |
-
loader = val_loader(self.cfg, trialFileName = self.cfg.evalTrialAVA, \
|
86 |
-
audioPath = os.path.join(self.cfg
|
87 |
-
.audioPathAVA , self.cfg
|
88 |
-
.evalDataType), \
|
89 |
-
visualPath = os.path.join(self.cfg
|
90 |
-
.visualPathAVA, self.cfg
|
91 |
-
.evalDataType), \
|
92 |
-
num_speakers = self.cfg.MODEL.NUM_SPEAKERS
|
93 |
-
)
|
94 |
-
valLoader = torch.utils.data.DataLoader(loader,
|
95 |
-
batch_size=self.cfg.VAL.BATCH_SIZE,
|
96 |
-
shuffle=False,
|
97 |
-
pin_memory=True,
|
98 |
-
num_workers=16)
|
99 |
-
|
100 |
-
return valLoader
|
101 |
-
|
102 |
-
|
103 |
-
def prepare_context_files(cfg):
|
104 |
-
path = os.path.join(cfg.DATA.dataPathAVA, "csv")
|
105 |
-
for phase in ["train", "val", "test"]:
|
106 |
-
csv_f = f"{phase}_loader.csv"
|
107 |
-
csv_orig = f"{phase}_orig.csv"
|
108 |
-
entity_f = os.path.join(path, phase + "_entity.json")
|
109 |
-
ts_f = os.path.join(path, phase + "_ts.json")
|
110 |
-
if os.path.exists(entity_f) and os.path.exists(ts_f):
|
111 |
-
continue
|
112 |
-
orig_df = pandas.read_csv(os.path.join(path, csv_orig))
|
113 |
-
entity_data = {}
|
114 |
-
ts_to_entity = {}
|
115 |
-
|
116 |
-
for index, row in orig_df.iterrows():
|
117 |
-
|
118 |
-
entity_id = row['entity_id']
|
119 |
-
video_id = row['video_id']
|
120 |
-
if row['label'] == "SPEAKING_AUDIBLE":
|
121 |
-
label = 1
|
122 |
-
else:
|
123 |
-
label = 0
|
124 |
-
ts = float(row['frame_timestamp'])
|
125 |
-
if video_id not in entity_data.keys():
|
126 |
-
entity_data[video_id] = {}
|
127 |
-
if entity_id not in entity_data[video_id].keys():
|
128 |
-
entity_data[video_id][entity_id] = {}
|
129 |
-
if ts not in entity_data[video_id][entity_id].keys():
|
130 |
-
entity_data[video_id][entity_id][ts] = []
|
131 |
-
|
132 |
-
entity_data[video_id][entity_id][ts] = label
|
133 |
-
|
134 |
-
if video_id not in ts_to_entity.keys():
|
135 |
-
ts_to_entity[video_id] = {}
|
136 |
-
if ts not in ts_to_entity[video_id].keys():
|
137 |
-
ts_to_entity[video_id][ts] = []
|
138 |
-
ts_to_entity[video_id][ts].append(entity_id)
|
139 |
-
|
140 |
-
with open(entity_f) as f:
|
141 |
-
json.dump(entity_data, f)
|
142 |
-
|
143 |
-
with open(ts_f) as f:
|
144 |
-
json.dump(ts_to_entity, f)
|
145 |
-
|
146 |
-
|
147 |
-
def main(gpu, world_size):
|
148 |
-
# The structure of this code is learnt from https://github.com/clovaai/voxceleb_trainer
|
149 |
-
cfg = bootstrap(print_cfg=False)
|
150 |
-
rank = gpu
|
151 |
-
dist.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
|
152 |
-
|
153 |
-
make_deterministic(seed=int(cfg.SEED))
|
154 |
-
torch.cuda.set_device(gpu)
|
155 |
-
device = torch.device("cuda:{}".format(gpu))
|
156 |
-
|
157 |
-
warnings.filterwarnings("ignore")
|
158 |
-
|
159 |
-
cfg = init_args(cfg)
|
160 |
-
|
161 |
-
data = DataPrep(cfg, world_size, rank)
|
162 |
-
|
163 |
-
if cfg.downloadAVA == True:
|
164 |
-
preprocess_AVA(cfg)
|
165 |
-
quit()
|
166 |
-
|
167 |
-
prepare_context_files(cfg)
|
168 |
-
|
169 |
-
modelfiles = glob.glob('%s/model_0*.model' % cfg.modelSavePath)
|
170 |
-
modelfiles.sort()
|
171 |
-
if len(modelfiles) >= 1:
|
172 |
-
print("Model %s loaded from previous state!" % modelfiles[-1])
|
173 |
-
epoch = int(os.path.splitext(os.path.basename(modelfiles[-1]))[0][6:]) + 1
|
174 |
-
s = loconet(cfg, rank, device)
|
175 |
-
s.loadParameters(modelfiles[-1])
|
176 |
-
else:
|
177 |
-
epoch = 1
|
178 |
-
s = loconet(cfg, rank, device)
|
179 |
-
|
180 |
-
while (1):
|
181 |
-
loss, lr = s.train_network(epoch=epoch, loader=data.train_dataloader())
|
182 |
-
|
183 |
-
s.saveParameters(cfg.modelSavePath + "/model_%04d.model" % epoch)
|
184 |
-
|
185 |
-
if epoch >= cfg.TRAIN.MAX_EPOCH:
|
186 |
-
quit()
|
187 |
-
|
188 |
-
epoch += 1
|
189 |
-
|
190 |
-
|
191 |
-
if __name__ == '__main__':
|
192 |
-
|
193 |
-
cfg = bootstrap()
|
194 |
-
world_size = cfg.NUM_GPUS #
|
195 |
-
os.environ['MASTER_ADDR'] = '127.0.0.1' #
|
196 |
-
os.environ['MASTER_PORT'] = str(random.randint(4000, 8888)) #
|
197 |
-
mp.spawn(main, nprocs=cfg.NUM_GPUS, args=(world_size,))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|