import json import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig

model_id = "Suraponn/llama_3.1_8B_Thai_instruct"

tokenizer = AutoTokenizer.from_pretrained( model_id, )

model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda:0", torch_dtype=torch.float16, )

config_setting = AutoConfig.from_pretrained( model_id, add_special_tokens=True, )

if tokenizer.chat_template is None: tokenizer.chat_template = tokenizer.default_chat_template

if not "system" in tokenizer.chat_template and "system" in tokenizer.default_chat_template: tokenizer.chat_template = tokenizer.default_chat_template

s_split = "เขียนบทความเกี่ยวกับการออกกำลังกายให้ถูกต้อง"

chat = [ { "role": "system", "content": "You are a helpfull assistant. Please respond in Thai." }, { "role": "user", "content": s_split, }, ]

tokenizer.use_default_system_prompt = False extract_input = tokenizer.apply_chat_template(chat, tokenize=False , add_generation_prompt=True)

#extract_input = extract_input.split(s_split)[0] print("------------\n" + extract_input + "\n------------")

inputs = tokenizer( extract_input, return_tensors="pt", add_special_tokens = False, ) #print(inputs)

terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>"), ] #print(terminators)

inputs = inputs.to(model.device)

with torch.no_grad(): tokens = model.generate( **inputs, max_new_tokens=2048, do_sample=True, eos_token_id=terminators, temperature=0.7, #top_p=1, )

output = tokenizer.decode(tokens[0]) print(output)

Downloads last month
24
Safetensors
Model size
8.03B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Suraponn/llama_3.1_8B_Thai_instruct

Finetuned
(746)
this model
Quantizations
1 model

Dataset used to train Suraponn/llama_3.1_8B_Thai_instruct