|
import streamlit as st |
|
import cv2 |
|
import time |
|
import tensorflow as tf |
|
from tensorflow.keras.models import load_model |
|
import numpy as np |
|
from pygame import mixer |
|
|
|
|
|
|
|
from datetime import datetime |
|
model = load_model('Drowsiness_model_efficient.h5') |
|
|
|
html_temp= """ |
|
<div style="background-color:tomato;padding:10px"> |
|
<h2 style="color:white;text-align:centre;">Drowsiness Detection App </h2> |
|
</div> |
|
""" |
|
st.markdown(html_temp,unsafe_allow_html=True) |
|
|
|
st.markdown( |
|
|
|
""" |
|
This app is developed for drowsiness detection. This app will raise an alarm if the person is drowsy. |
|
""" |
|
) |
|
Warning="By selecting the check box you are agree to use our app.\nDon't worry!! We will not save your any data." |
|
check=st.checkbox("I agree",help=Warning) |
|
if(check): |
|
st.write('Great!') |
|
btn=st.button("Start") |
|
st.write('Press (c) for ending the stream') |
|
if btn: |
|
|
|
|
|
|
|
|
|
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') |
|
|
|
|
|
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml') |
|
mixer.init() |
|
sound= mixer.Sound(r'mixkit-digital-clock-digital-alarm-buzzer-992.wav') |
|
cap = cv2.VideoCapture(0) |
|
Score = 0 |
|
openScore = 0 |
|
while 1: |
|
|
|
ret, img = cap.read() |
|
height,width = img.shape[0:2] |
|
frame = img |
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
faces = face_cascade.detectMultiScale(gray, scaleFactor= 1.3, minNeighbors=2) |
|
|
|
for (x,y,w,h) in faces: |
|
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) |
|
roi_gray = gray[y:y+h, x:x+w] |
|
roi_color = img[y:y+h, x:x+w] |
|
eye= img[y:y+h,x:x+w] |
|
eye= cv2.resize(eye, (256 ,256)) |
|
im = tf.constant(eye, dtype = tf.float32) |
|
img_array = tf.expand_dims(im, axis = 0) |
|
prediction = model.predict(img_array) |
|
print(np.argmax(prediction[0])) |
|
|
|
|
|
if np.argmax(prediction[0])<0.50: |
|
cv2.putText(frame,'closed',(10,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255), |
|
thickness=1,lineType=cv2.LINE_AA) |
|
cv2.putText(frame,'Score'+str(Score),(100,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255), |
|
thickness=1,lineType=cv2.LINE_AA) |
|
Score=Score+1 |
|
if(Score>25): |
|
try: |
|
sound.play() |
|
|
|
except: |
|
pass |
|
|
|
|
|
elif np.argmax(prediction[0])>0.60: |
|
cv2.putText(frame,'open',(10,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255), |
|
thickness=1,lineType=cv2.LINE_AA) |
|
cv2.putText(frame,'Score'+str(Score),(100,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255), |
|
thickness=1,lineType=cv2.LINE_AA) |
|
Score = Score-1 |
|
openScore = openScore +1 |
|
if (Score<0 or openScore >8): |
|
Score=0 |
|
|
|
|
|
cv2.imshow('frame',img) |
|
|
|
if cv2.waitKey(33) & 0xFF==ord('c'): |
|
break |
|
cap.release() |
|
cv2.destroyAllWindows() |
|
|
|
st.text("Thanks for using") |
|
if st.button("About"): |
|
st.text("Created by Surendra Kumar") |
|
|
|
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts |
|
from htbuilder.units import percent, px |
|
from htbuilder.funcs import rgba, rgb |
|
|
|
|
|
def image(src_as_string, **style): |
|
return img(src=src_as_string, style=styles(**style)) |
|
|
|
|
|
def link(link, text, **style): |
|
return a(_href=link, _target="_blank", style=styles(**style))(text) |
|
|
|
|
|
def layout(*args): |
|
style = """ |
|
<style> |
|
# MainMenu {visibility: hidden;} |
|
footer {visibility: hidden;} |
|
.stApp { bottom: 105px; } |
|
</style> |
|
""" |
|
|
|
style_div = styles( |
|
position="fixed", |
|
left=0, |
|
bottom=0, |
|
margin=px(0, 0, 0, 0), |
|
width=percent(100), |
|
color="black", |
|
text_align="center", |
|
height="auto", |
|
opacity=1 |
|
) |
|
|
|
style_hr = styles( |
|
display="block", |
|
margin=px(8, 8, "auto", "auto"), |
|
border_style="solid", |
|
border_width=px(0.5) |
|
) |
|
|
|
body = p() |
|
foot = div( |
|
style=style_div |
|
)( |
|
hr( |
|
style=style_hr |
|
), |
|
body |
|
) |
|
st.markdown(style,unsafe_allow_html=True) |
|
|
|
for arg in args: |
|
if isinstance(arg, str): |
|
body(arg) |
|
|
|
elif isinstance(arg, HtmlElement): |
|
body(arg) |
|
|
|
st.markdown(str(foot), unsafe_allow_html=True) |
|
|
|
|
|
def footer(): |
|
myargs = [ |
|
"©️ surendraKumar", |
|
br(), |
|
link("https://www.linkedin.com/in/surendra-kumar-51802022b", image('https://icons.getbootstrap.com/assets/icons/linkedin.svg') ), |
|
br(), |
|
link("https://www.instagram.com/im_surendra_dhaka/",image('https://icons.getbootstrap.com/assets/icons/instagram.svg')), |
|
] |
|
layout(*myargs) |
|
|
|
if __name__ == "__main__": |
|
footer() |