dqn-FrozenLake-v1 / README.md
Sushmitha047's picture
Initial commit
fc04bb9 verified
|
raw
history blame
2.48 kB
---
library_name: stable-baselines3
tags:
- FrozenLake-v1
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1
type: FrozenLake-v1
metrics:
- type: mean_reward
value: 0.50 +/- 0.50
name: mean_reward
verified: false
---
# **DQN** Agent playing **FrozenLake-v1**
This is a trained model of a **DQN** agent playing **FrozenLake-v1**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env FrozenLake-v1 -orga Sushmitha047 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env FrozenLake-v1 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env FrozenLake-v1 -orga Sushmitha047 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env FrozenLake-v1 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env FrozenLake-v1 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env FrozenLake-v1 -f logs/ -orga Sushmitha047
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 1000),
('n_timesteps', 100000.0),
('optimize_memory_usage', False),
('policy', 'MlpPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```