bart-large-nl2sql / README.md
SwastikM's picture
Update README.md
b64b51c verified
|
raw
history blame
7.28 kB
---
widget:
- text: >-
sql_prompt: What is the monthly voice usage for each customer in the Mumbai
region? sql_context: CREATE TABLE customers (customer_id INT, name
VARCHAR(50), voice_usage_minutes FLOAT, region VARCHAR(50)); INSERT INTO
customers (customer_id, name, voice_usage_minutes, region) VALUES (1, 'Aarav
Patel', 500, 'Mumbai'), (2, 'Priya Shah', 700, 'Mumbai');
example_title: Example1
- text: >-
sql_prompt: How many wheelchair accessible vehicles are there in the 'Train'
mode of transport? sql_context: CREATE TABLE Vehicles(vehicle_id INT,
vehicle_type VARCHAR(20), mode_of_transport VARCHAR(20),
is_wheelchair_accessible BOOLEAN); INSERT INTO Vehicles(vehicle_id,
vehicle_type, mode_of_transport, is_wheelchair_accessible) VALUES (1,
'Train_Car', 'Train', TRUE), (2, 'Train_Engine', 'Train', FALSE), (3, 'Bus',
'Bus', TRUE);
example_title: Example2
- text: >-
sql_prompt: Which economic diversification efforts in the 'diversification'
table have a higher budget than the average budget for all economic
diversification efforts in the 'budget' table? sql_context: CREATE TABLE
diversification (id INT, effort VARCHAR(50), budget FLOAT); CREATE TABLE
budget (diversification_id INT, diversification_effort VARCHAR(50), amount
FLOAT);
example_title: Example3
language:
- en
datasets:
- gretelai/synthetic_text_to_sql
metrics:
- rouge
library_name: transformers
base_model: facebook/bart-large-cnn
model-index:
- name: SwastikM/bart-large-nl2sql
results:
- task:
type: text2text-generation
dataset:
name: gretelai/synthetic_text_to_sql
type: gretelai/synthetic_text_to_sql
split: train, test
metrics:
- name: ROUGE-1
type: rouge
value: 55.69
verified: true
- name: ROUGE-2
type: rouge
value: 42.99
verified: true
- name: ROUGE-L
type: rouge
value: 51.43
verified: true
- name: ROUGE-LSUM
type: rouge
value: 51.4
verified: true
github: https://github.com/swastikmaiti/SwastikM-bart-large-nl2sql.git
co2_eq_emissions:
emissions: 160
source: "[ML CO2 Impact](https://mlco2.github.io/impact/#home)"
training_type: "fine-tuning"
hardware_used: "TESLA P100"
tags:
- natural language
- SQL
- text2sql
- nl2sql
---
# BART-LARGE-CNN fine-tuned on SYNTHETIC_TEXT_TO_SQL
Generate SQL query from Natural Language question with a SQL context.
## Model Details
### Model Description
BART from facebook/bart-large-cnn is fintuned on gretelai/synthetic_text_to_sql dataset to generate SQL from NL and SQL context
- **Model type:** BART
- **Language(s) (NLP):** English
- **License:** openrail
- **Finetuned from model [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct.)**
- **Dataset:** [gretelai/synthetic_text_to_sql](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql)
## Intended uses & limitations
Addressing the power of LLM in fintuned downstream task. Implemented as a personal Project.
### How to use
```python
query_question_with_context = """sql_prompt: Which economic diversification efforts in
the 'diversification' table have a higher budget than the average budget for all economic diversification efforts in the 'budget' table?
sql_context: CREATE TABLE diversification (id INT, effort VARCHAR(50), budget FLOAT); CREATE TABLE
budget (diversification_id INT, diversification_effort VARCHAR(50), amount FLOAT);"""
```
# Use a pipeline as a high-level helper
```python
from transformers import pipeline
sql_generator = pipeline("text2text-generation", model="SwastikM/bart-large-nl2sql")
sql = sql_generator(query_question_with_context)[0]['generated_text']
print(sql)
```
# Load model directly
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("SwastikM/bart-large-nl2sql")
model = AutoModelForSeq2SeqLM.from_pretrained("SwastikM/bart-large-nl2sql")
inputs = tokenizer(query_question_with_context, return_tensors="pt").input_ids
outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(sql)
```
## Training Details
### Training Data
[gretelai/synthetic_text_to_sql](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql)
### Training Procedure
HuggingFace Accelerate with Training Loop.
#### Preprocessing
- ***Encoder Input:*** "sql_prompt: " + data['sql_prompt']+" sql_context: "+data['sql_context']
- ***Decoder Input:*** data['sql']
#### Training Hyperparameters
- **Optimizer:** AdamW
- **lr:** 2e-5
- **decay:** linear
- **num_warmup_steps:** 0
- **batch_size:** 8
- **num_training_steps:** 12500
#### Hardware
- **GPU:** P100
### Citing Dataset and BaseModel
```
@software{gretel-synthetic-text-to-sql-2024,
author = {Meyer, Yev and Emadi, Marjan and Nathawani, Dhruv and Ramaswamy, Lipika and Boyd, Kendrick and Van Segbroeck, Maarten and Grossman, Matthew and Mlocek, Piotr and Newberry, Drew},
title = {{Synthetic-Text-To-SQL}: A synthetic dataset for training language models to generate SQL queries from natural language prompts},
month = {April},
year = {2024},
url = {https://huggingface.co/datasets/gretelai/synthetic-text-to-sql}
}
```
```
@article{DBLP:journals/corr/abs-1910-13461,
author = {Mike Lewis and
Yinhan Liu and
Naman Goyal and
Marjan Ghazvininejad and
Abdelrahman Mohamed and
Omer Levy and
Veselin Stoyanov and
Luke Zettlemoyer},
title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension},
journal = {CoRR},
volume = {abs/1910.13461},
year = {2019},
url = {http://arxiv.org/abs/1910.13461},
eprinttype = {arXiv},
eprint = {1910.13461},
timestamp = {Thu, 31 Oct 2019 14:02:26 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
## Additional Information
- ***Github:*** [Repository](https://github.com/swastikmaiti/SwastikM-bart-large-nl2sql.git)
## Acknowledgment
Thanks to [@AI at Meta](https://huggingface.co/facebook) for adding the Pre Trained Model.
Thanks to [@Gretel.ai](https://huggingface.co/gretelai) for adding the datset.
## Model Card Authors
Swastik Maiti