Upload handler.py
Browse files- handler.py +23 -22
handler.py
CHANGED
@@ -1,28 +1,29 @@
|
|
1 |
-
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
tokenizer
|
7 |
-
|
|
|
8 |
|
9 |
-
def
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature = inputs.get("parameters", {}).get("temperature", 0.7)
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
|
4 |
+
class EndpointHandler:
|
5 |
+
def __init__(self, path):
|
6 |
+
# Load tokenizer and model
|
7 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
8 |
+
self.model = AutoModelForCausalLM.from_pretrained(path)
|
9 |
|
10 |
+
def __call__(self, inputs):
|
11 |
+
# Parse input
|
12 |
+
input_text = inputs.get("inputs", "")
|
13 |
+
parameters = inputs.get("parameters", {})
|
14 |
+
max_new_tokens = parameters.get("max_new_tokens", 50)
|
15 |
+
temperature = parameters.get("temperature", 0.7)
|
|
|
16 |
|
17 |
+
# Tokenize input
|
18 |
+
input_ids = self.tokenizer(input_text, return_tensors="pt").input_ids
|
19 |
|
20 |
+
# Generate output
|
21 |
+
output = self.model.generate(
|
22 |
+
input_ids,
|
23 |
+
max_new_tokens=max_new_tokens,
|
24 |
+
temperature=temperature,
|
25 |
+
)
|
|
|
26 |
|
27 |
+
# Decode output
|
28 |
+
output_text = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
29 |
+
return {"generated_text": output_text}
|